Understanding the pathway(s) that a virus follows during infectious penetration will greatly facilitate the development of useful entry inhibitors. We outline plans to use contemporary tools of live-cell and single molecule imaging to provide quantitative descriptions ofthe invasion of mammalian cells by viral pathogens, including analysis of molecular mechanisms of membrane fusion. We will use an advanced live-cell, spinning-disk confocal fluorescence imaging configuration, with very sensitive optics and optimized illumination, for long time-course studies of viral entry and penetration, and we will develop software for 3D multi-tracking to enable analysis of all particles within the field of view in a given experiment. We will apply these technologies in close collaboration with Projects 1, 2 and 3 to analyse the pathways of entry of pseudotyped VSV particles bearing the glycoproteins from representatives of a broad range of enveloped RNA viruses and to determine how candidate entry inhibitors block progression along the normal entry route. We will use genome-edited cells expressing at endogenous markers for various compartments of endocytic pathways (clathrin, Rab proteins, etc.) to avoid the perturbations often associated with ectopic overexpression, and we will generate such cell lines for a number of additional proteins identified as potential targets in Project 3. Our long-term goals are to contribute a 3D time course in vivo to the characterization of candidate inhibitors and in so doing to achieve a substantially more detailed molecular description of endosomal pathways and of the proteins along those pathways that regulate or subvert viral entry.

Public Health Relevance

Direct visualization of viruses as they enter living cells, as provided by advanced imaging technologies and modes of image analysis, will facilitate the development of entry inhibitors and uncover unexpected features of the endosomal uptake of viral pathogens.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-LR-M (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
United States
Zip Code
Carocci, Margot; Hinshaw, Stephen M; Rodgers, Mary A et al. (2015) The bioactive lipid 4-hydroxyphenyl retinamide inhibits flavivirus replication. Antimicrob Agents Chemother 59:85-95
Chao, Luke H; Klein, Daryl E; Schmidt, Aaron G et al. (2014) Sequential conformational rearrangements in flavivirus membrane fusion. Elife 3:e04389
Jae, Lucas T; Raaben, Matthijs; Herbert, Andrew S et al. (2014) Virus entry. Lassa virus entry requires a trigger-induced receptor switch. Science 344:1506-10