Category A filoviruses and arenaviruses cause severe and rapidly progressing hemorrhagic fever, for which no specific treatments or vaccines are available. Among the possible pre- and post-exposure treatments vetted, monoclonal antibodies are currently thought to be the most effective, provide the longest window for post-exposure treatment, and be most likely to achieve FDA approval for reasons of safety, availability and efficacy. In the last year, members of our team were first to identify specific antibodies and cocktails of antibodies that confer effective post-exposure protection against Ebola virus and Lassa virus in multiple animal models. We will translate these therapies and fill critical resource gaps in antibodies against other pathogenic filoviruses (Sudan, Marburg and Bundibugyo) and arenaviruses (Lujo, Machupo, Junin, etc.). This proposal describes a large, multidisciplinary consortium from academic and industrial investigators. We have gathered ~315 monoclonal antibodies against the filoviruses and ~100 monoclonal antibodies against the arenaviruses. These are the largest antibody pools ever assembled for these viruses and include the most potent antibodies known. The consortium includes directors of three BSL4 laboratories - experts in post exposure therapeutic development and evaluation;other leaders in high-throughput and human antibody discovery and analysis with access to unique, large cohorts of human survivors of outbreaks in 2012;structural biologists with intimate knowledge of the filovirus and arenavirus glycoproteins able to map the epitope of nearly every antibody in the pools during the course of the project;and industrial scientists who are experts in large-scale production and evaluation of therapeutics for human use. Our consortium is open to all investigators and to all antibodies they wish to contribute. We will provide a public, comprehensive and definitive analysis of which antibodies are most effective against these antibodies and why, which antibodies can be combined for greatest synergy and why, and which epitopes lead to broad-spectrum reactivity. The over-arching goal is to advance mAb-based immunotherapeutic products to fill the need for treatments against these families of viruses and to file one or more Investigational New Drug applications by year 5.

Public Health Relevance

This project will perform an unprecedented, field-wide analysis of antibodies against viral hemorrhagic fevers and will translate the most effective antibody cocktails to clinical use. These products will provide a much needed pre- or post-exposure therapy against some of the world's most lethal viruses.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-LR-M (J1))
Program Officer
Schaefer, Michael R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong et al. (2016) Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. J Virol 90:266-78
Wec, Anna Z; Nyakatura, Elisabeth K; Herbert, Andrew S et al. (2016) A ""Trojan horse"" bispecific antibody strategy for broad protection against ebolaviruses. Science :
Pallesen, Jesper; Murin, Charles D; de Val, Natalia et al. (2016) Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nat Microbiol 1:16128
Frei, Julia C; Nyakatura, Elisabeth K; Zak, Samantha E et al. (2016) Bispecific Antibody Affords Complete Post-Exposure Protection of Mice from Both Ebola (Zaire) and Sudan Viruses. Sci Rep 6:19193
Natesan, Mohan; Jensen, Stig M; Keasey, Sarah L et al. (2016) Human Survivors of Disease Outbreaks Caused by Ebola or Marburg Virus Exhibit Cross-Reactive and Long-Lived Antibody Responses. Clin Vaccine Immunol 23:717-24
Qiu, Xiangguo; Audet, Jonathan; Lv, Ming et al. (2016) Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Sci Transl Med 8:329ra33
Bornholdt, Zachary A; Turner, Hannah L; Murin, Charles D et al. (2016) Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science 351:1078-83
Goba, Augustine; Khan, S Humarr; Fonnie, Mbalu et al. (2016) An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. J Infect Dis 214:S110-S121
Robinson, James E; Hastie, Kathryn M; Cross, Robert W et al. (2016) Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun 7:11544
Zeitlin, Larry; Whaley, Kevin J; Olinger, Gene G et al. (2016) Antibody therapeutics for Ebola virus disease. Curr Opin Virol 17:45-9

Showing the most recent 10 out of 27 publications