Filoviruses and arenaviruses are two major families of lethal hemorrhagic fever viruses for which no vaccines or treatments are currently available. Previous work by several investigators involved in this proposal has unequivocally demonstrated the feasibility of protecting non-human primates against viral challenge with immunotherapy. This highly translational proposal will identify the most effective monoclonal antibodies and from them, create broad-spectrum antibody cocktails for pre- or post-exposure use. To achieve this goal, we will leverage the consortium's large collection of anti-filovirus and anti-arenavirus antibodies, as well as new antibodies to be derived from ongoing and proposed discovery efforts. However, it will not be feasible to test each of our hundreds of candidate antibodies and thousands of potential antibody combinations in animals without some initial in vitro downselection. To generate a manageable set of candidate antibodies and cocktails, Core C (working together the three project teams and the Gore D team) will categorize antibodies into structural and functional groups, perform rules-based triage of antibody candidates, and design antibody cocktails based on antiviral activity and functional diversity. Finally and importantly. Core C will prioritize candidate cocktails based on their susceptibility to escape mutations, and will, together with Core D, identify antibodies most resistant to escape, as well as replacement antibodies that will """"""""mop up"""""""" escaping virions. In addition to selection of the most effective single antibodies and cocktails of antibodies to forward for patient use, this Gore will provide essential information that addresses major, basic knowledge gaps in the field. Our comprehensive analysis will illustrate which epitopes lead to the most effective protection, which in vitro assays are the best predictors of in vivo efficacy, and which epitopes lead to broad-spectrum reactivity and protection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109762-01
Application #
8654214
Study Section
Special Emphasis Panel (ZAI1-LR-M (J1))
Project Start
2014-03-15
Project End
2019-02-28
Budget Start
2014-03-15
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$761,167
Indirect Cost
$105,104
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
King, Liam B; Fusco, Marnie L; Flyak, Andrew I et al. (2018) The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host Microbe 23:101-109.e4
Saphire, Erica Ollmann; Schendel, Sharon L; Fusco, Marnie L et al. (2018) Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell 174:938-952.e13
Siragam, Vinayakumar; Wong, Gary; Qiu, Xiang-Guo (2018) Animal models for filovirus infections. Zool Res 39:15-24
West, Brandyn R; Moyer, Crystal L; King, Liam B et al. (2018) Structural Basis of Pan-Ebolavirus Neutralization by a Human Antibody against a Conserved, yet Cryptic Epitope. MBio 9:
Gilchuk, Pavlo; Mire, Chad E; Geisbert, Joan B et al. (2018) Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. J Infect Dis 218:S565-S573
Yang, Shu; Xu, Miao; Lee, Emily M et al. (2018) Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov 4:31
Gilchuk, Pavlo; Kuzmina, Natalia; Ilinykh, Philipp A et al. (2018) Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity 49:363-374.e10
Nyakatura, Elisabeth K; Zak, Samantha E; Wec, Anna Z et al. (2018) Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins. J Biol Chem 293:6201-6211
Zhu, Wenjun; Zhang, Zirui; He, Shihua et al. (2018) Successful treatment of Marburg virus with orally administrated T-705 (Favipiravir) in a mouse model. Antiviral Res 151:39-49
Wong, Gary; Mendoza, Emelissa J; Plummer, Francis A et al. (2018) From bench to almost bedside: the long road to a licensed Ebola virus vaccine. Expert Opin Biol Ther 18:159-173

Showing the most recent 10 out of 62 publications