Polysaccharides (PS) represent major protective antigens on the surface of many pathogenic bacteria cells and have therefore been targets of successful and effective vaccines to prevent infectious disease. Conjugation of PS to proteins is currently the most established way to make immunogenic PS vaccines. However, conjugation technology is expensive and technically challenging. The Mekalanos laboratory has developed a simple and inexpensive way of making 'virtual conjugate vaccines' that employs Protein Capsular Matrix Vaccine (PCMV) technology. This proposal seeks to extend PCMV technology to modify killed whole cell bacteria vaccines (wcPCMV) and thus render them immunogenic after oral immunization and capable of inducing 'conjugate-like' immune responses against surface PS of bacterial cells. This will be accomplished by using a bifunctional molecular cross-linker (glutaraldehyde) to drive extensive proteinprotein coupling in the vicinity of surface-localized PS chains, thus entrapping the PS in a protein mesh that will remain associated with them after dissolution of the cell by elements of the host immune system. Thus, B cells expressing antibody receptors that recognize PS will take up PS only in the context of PCMV carrier protein. This process should (as with conjugate vaccines) trigger activation of T helper cells that instruct B cells to undergo replication, immunoglobulin class switching, and mutational affinity maturation of their anti- PS antibody genes. We will make wcPCMV vaccines for several species of organisms to control for the effect ofthe chemistry of different PS surface structures, and their density on the cell surface. These will include the O1 Inaba, O1 Ogawa and 0139 serogroups of Vibrio cholerae and Vi encapsulated Salmonella typhi. As a control for the properties of wcPCMV versus conventional PCMV and conjugates, we will also evaluate the method on several encapsulated types of Streptococcus pneumoniae, a Gram-positive bacterium. The wcPCMV vaccines will be explored as immunogens using both parenteral and mucosal routes of administration. The functionality of wcPCMV-induced antibodies will be assessed for complement dependent bacteriolysis activity, as well as their ability to protect experimental animals from direct pathogenic bacterial challenge. This proposal may lead to a multivalent wcPCMV vaccine against cholera, . brucellosis, 0157 E. coli, and anthrax. However, wcPCMV technology could more broadly impact mucosal vaccine development for many other mucosal bacterial pathogens that display PS on their surface.

Public Health Relevance

Immunization with polysaccharide-protein conjugate vaccines is an effective way to induce protective immune responses against many bacterial pathogens. Combination vaccines directed against multiple pathogens are highly desirable. However, conjugation technology is expensive and technically challenging. This proposal seeks to extend the use of a new alternate technology. Protein Capsular Matrix Vaccine technology, to whole cell bacteria vaccines to generate 'conjugate-like' immune responses. If successful, this technology will simplify the preparation of vaccines directed against bacterial pathogens and further enable the development of vaccines directed against multiple pathogens

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109764-02
Application #
8791874
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2015-03-01
Budget End
2016-02-29
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Harvard Medical School
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
Baranowski, Catherine; Welsh, Michael A; Sham, Lok-To et al. (2018) Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. Elife 7:
Rohs, Patricia D A; Buss, Jackson; Sim, Sue I et al. (2018) A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLoS Genet 14:e1007726
Vickery, Christopher R; Wood, B McKay; Morris, Heidi G et al. (2018) Reconstitution of Staphylococcus aureus Lipoteichoic Acid Synthase Activity Identifies Congo Red as a Selective Inhibitor. J Am Chem Soc 140:876-879
Bertani, Blake R; Taylor, Rebecca J; Nagy, Emma et al. (2018) A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane. Mol Microbiol 109:541-554
Mandler, Michael D; Baidin, Vadim; Lee, James et al. (2018) Novobiocin Enhances Polymyxin Activity by Stimulating Lipopolysaccharide Transport. J Am Chem Soc 140:6749-6753
Sjodt, Megan; Brock, Kelly; Dobihal, Genevieve et al. (2018) Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature 556:118-121
Zheng, Sanduo; Sham, Lok-To; Rubino, Frederick A et al. (2018) Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. Proc Natl Acad Sci U S A 115:6709-6714
Rubino, Frederick A; Kumar, Sujeet; Ruiz, Natividad et al. (2018) Membrane Potential Is Required for MurJ Function. J Am Chem Soc 140:4481-4484
Schaefer, Kaitlin; Owens, Tristan W; Kahne, Daniel et al. (2018) Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. J Am Chem Soc 140:2442-2445
Sherman, David J; Xie, Ran; Taylor, Rebecca J et al. (2018) Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. Science 359:798-801

Showing the most recent 10 out of 46 publications