Recent advances have led to the appreciation that Pathogen-associated Molecular Patterns (PAMPs) derived from microbial pathogens have adjuvant activities. A major conceptual advance in innate immunity has been the discovery of Pattern Recognition Receptors (PRR) that recognize these PAMPs. This recognition profoundly shapes adaptive immunity, thereby impacting host responses to pathogens and to vaccines. A plethora of PRR families have now been described. While some PAMPs are known to activate a specific receptor, more in-depth analyses have revealed that many PAMPs activate multiple PRRs or PRR pathways. The overarching purpose of this project is to use a novel nanoparticle (NP) platform to deliver PAMPs that can best activate the innate immune system to shape the desirable adaptive immunity for beneficial, efficacious vaccine outcome. The distinguishing technology platform of this application is the production of NP by a soft lithography particle molding process called Particle Replication In Nonwetting Templates (PRINT), a technology described and further studied in Project 1. A major advantage of PRINT is the fabrication of large quantities of immunologically-inert NPs of precise size, chemistry, porosity and shape of Good Manufacturing Practices (GMP) quality. This proposal plans to co-deliver antigen and PAM adjuvant complexes by PRINT-NP to optimize vaccine responses. This platform of vaccine/adjuvant delivery by NP will be used to test vaccines against viral pathogens of high medical needs. Mechanistic studies are also proposed to understand how the PAMP adjuvants activate the immune system by defining the specific receptors that mediate the effect of a PAMP adjuvant(s). Challenge studies will be performed in appropriate large or larger animal models to enable eventual translation to the clinic.

Public Health Relevance

The overarching purpose of this project is to use nanoparticles (NP) to deliver PAMP adjuvants that activate the innate immune system through a nano-technology platform that is both precise in formulation and uniform in biologic properties. We will focus on vaccines for high medical need viral infections, which are of broad importance in public health. The end goal is to achieve a novel product vaccine platform.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109784-01
Application #
8657213
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Cheng, Liang; Wang, Qi; Li, Guangming et al. (2018) TLR3 agonist and CD40-targeting vaccination induces immune responses and reduces HIV-1 reservoirs. J Clin Invest 128:4387-4396
Metz, Stefan W; Thomas, Ashlie; Brackbill, Alex et al. (2018) Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype. PLoS Negl Trop Dis 12:e0006793
Chen, Naihan; Gallovic, Matthew D; Tiet, Pamela et al. (2018) Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy. J Control Release 289:114-124
Collier, Michael A; Junkins, Robert D; Gallovic, Matthew D et al. (2018) Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists. Mol Pharm 15:4933-4946
Cheng, Ning; Watkins-Schulz, Rebekah; Junkins, Robert D et al. (2018) A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 3:
Chen, Naihan; Johnson, Monica M; Collier, Michael A et al. (2018) Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses. J Control Release 273:147-159
Metz, Stefan W; Thomas, Ashlie; White, Laura et al. (2018) Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J 15:60
Shao, Wenwei; Earley, Lauriel F; Chai, Zheng et al. (2018) Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction. JCI Insight 3:
Junkins, Robert D; Gallovic, Matthew D; Johnson, Brandon M et al. (2018) A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Control Release 270:1-13
Swanson, Karen V; Junkins, Robert D; Kurkjian, Cathryn J et al. (2017) A noncanonical function of cGAMP in inflammasome priming and activation. J Exp Med 214:3611-3626

Showing the most recent 10 out of 23 publications