A major conceptual advance in innate immunity is the discovery of Pathogen Recognition Receptors (PRR), which profoundly shape adaptive immunity to affect host response to pathogens. Major PRRs crucial for innate immunity against viral pathogens include toll-like receptors and RIG-I like receptors, while the role for NLR (nucleotide-binding leucine rich repeat containing, or NOD-like receptor) family in viral infection is just emerging. In this Program, we will focus on the revelation of novel nucleic acid sensing pathways relevant to multiple NIAID priority pathogens. The Program is comprised of three Projects, each led by an international leader in his/her field. The Program will be performed in a highly collaborative fashion with two Cores which will provide cutting edge proteomics and protein purification capabilities, headed by directors who have contributed seminal work in the field of PRRs. The overarching goals are: * To investigate the role of novel PRRs as receptors of viral nucleic acid which affect subsequent innate immune responses to NIAID high priority viral pathogens in human. * To apply cutting edge quantitative proteomic approaches for the identification of novel paradigm-shifting pathways of pathogen sensing. * To contrast and compare role of PRRs across diverse NIAID high priority human viruses. * To reveal cross-talk between multiple PRRs in host response to NIAID priority human viruses * To investigate intracellular trafficking of viral ligands to sites of recognition by PRRs. * To capitalize on unique biochemical capabilities that are technically challenging to quantify the ligand-binding functions of PRRs. * To maximize opportunities for validating experimental findings with primary human materials. These goals are highly response to the RFA-AI-12-048 and are in precise concordance with the stated purpose of the RFA that """"""""emphasis of research proposed in response to this FOA should be in defining novel cellular and molecular immune mechanisms involved in immunity to virus infection"""""""". It is also responsive because the pathways explored are broadly relevant to multiple high priority pathogens and will be studied in the context of five high priority RNA and DNA viruses. Finally, the proposed work is responsive to the purpose of the RFA because it specifically expands our understanding of novel PRR interaction with viruses and the accompanied changes in signaling pathways by profiling proteomic modifications in human innate immune cells caused by NIAID priority viral pathogens.

Public Health Relevance

This program will focus on novel Pattern Recognition Receptors that recognize viral nucleic acid ligands from NIAID Priority Pathogens. The Program will focus on multiple RNA and DNA Priority viruses to demonstrate the broad impact of these PRRs. It will further identify specific viral nucleic acids that interact with PRRs. The Program wll be aided by two Cores which will provide cutting edge proteomics and protein purification technologies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109965-01
Application #
8653231
Study Section
Special Emphasis Panel (ZAI1-ZL-I (J1))
Program Officer
Miller, Lara R
Project Start
2014-03-01
Project End
2019-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$2,155,717
Indirect Cost
$735,706
Name
University of North Carolina Chapel Hill
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Hirai-Yuki, Asuka; Hensley, Lucinda; McGivern, David R et al. (2016) MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science 353:1541-1545
Erdoğan, Özgün; Xie, Ling; Wang, Li et al. (2016) Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation. Sci Rep 6:24833
Ma, Zhe; Damania, Blossom (2016) The cGAS-STING Defense Pathway and Its Counteraction by Viruses. Cell Host Microbe 19:150-8
Bhatt, Aadra Prashant; Wong, Jason P; Weinberg, Marc S et al. (2016) A viral kinase mimics S6 kinase to enhance cell proliferation. Proc Natl Acad Sci U S A 113:7876-81
Guo, Haitao; König, Renate; Deng, Meng et al. (2016) NLRX1 Sequesters STING to Negatively Regulate the Interferon Response, Thereby Facilitating the Replication of HIV-1 and DNA Viruses. Cell Host Microbe 19:515-28
Gunawardena, Harsha P; O'Brien, Jonathon; Wrobel, John A et al. (2016) QuantFusion: Novel Unified Methodology for Enhanced Coverage and Precision in Quantifying Global Proteomic Changes in Whole Tissues. Mol Cell Proteomics 15:740-51
Damania, Blossom (2016) A Virological Perspective on Cancer. PLoS Pathog 12:e1005326
Chatterjee, Srirupa; Basler, Christopher F; Amarasinghe, Gaya K et al. (2016) Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses. J Mol Biol 428:3467-82
Giffin, Louise; West, John A; Damania, Blossom (2015) Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Modulates Endothelial Cell Movement by Upregulating Cellular Genes Involved in Migration. MBio 6:e01499-15
Wang, Li; Xie, Ling; Ramachandran, Srinivas et al. (2015) Non-canonical Bromodomain within DNA-PKcs Promotes DNA Damage Response and Radioresistance through Recognizing an IR-Induced Acetyl-Lysine on H2AX. Chem Biol 22:849-61

Showing the most recent 10 out of 31 publications