By combining immune monitoring on multiple platforms in a single center, the Human Immune Monitoring Center (HIMC, ACE Core B) has created an ideal environment for standardization, technology development, and data mining related to immune monitoring. Over the last few years, we have built an array of high-throughput and high-content assays that have proven useful for a variety of immunological studies in autoimmunity. In our first Specific Aim, we propose to offer a battery of standardized assays in support of the Principal Project, Collaborative Project, and Pilot Project, including: (i.) a 51-plex Luminex assay for serum cytokines, and development of SLE-specific chemokine assays;(ii.) immunophenotyping;phosphor-flow, and intracellular cytokine staining by mass cytometry (CyTOF) using up to 40 simultaneous antibodies; (iii.) conventional phospho-flow using a panel of cytokine stimuli and pSTAT-1;3, and 5 readouts on 4 major cell types;(iv.) whole-genome gene expression microarrays;and (v.) FACS sorting of plasmablasts. In our second Specific Aim, we will develop enhancements to the above assays, including for example, enrichment techniques for intracellular cytokine staining, cell-surface barcoding for CyTOF, and optimized stimulation/fixation/freezing protocols for on-site sample handling for functional assays. Finally, in our third Specific Aim, we will further develop our online relational database, Stanford Data Miner (SDM) to be compatible with these assays, and to allow integration of data across assays and with relevant clinical variables. We also plan to add additional machine learning tools to SDM to allow efficient mining of complex data sets. HIMC (ACE Core B) is already supporting current ACE trials ASC01 and APA01. The long term goal of ACE Core B is to develop and disseminate new multiplexed assay methodology and Standard Operating Procedures, and to serve the overall ACE mission by participating in the ACE Shared Research Agenda.

Public Health Relevance

The HIMC core will facilitate the generation of high-content, standardized immunological data that can be mined across projects for new metrics of immune activity in autoimmune diseases, and potential biomarkers for diagnosis, disease activity, and response to therapy.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Tan, Yann-Chong; Kongpachith, Sarah; Blum, Lisa K et al. (2014) Barcode-enabled sequencing of plasmablast antibody repertoires in rheumatoid arthritis. Arthritis Rheumatol 66:2706-15