Altered gene regulation underlies many facets of autoimmunity and its treatments. Pathogenic autoantibodies and immune complexes ultimately exert their effects through cellular signal transduction to impact gene expression. The central roles of specific transcription factors in driving immune cell fates, and anti-inflammatory and immunosuppressive drugs that control gene expression - such as steroids, cyclosporine A (CsA), and inhibitors of JAKs, lnterieukin-1 (IL-1), Tumor Necrosis Factor (TNF), and B Cell Activating Factor (BAFF) - suggest the importance of understanding gene regulation in autoimmunity. Rather than simply observing changes in gene expression, recent epigenomic tools have made it possible to determine the causality of gene expression, revealing the specific transcription factors and regulatory elements driving different gene expression programs. However, existing experimental methods require 10 million cells or more per assay, and are complex and laborious to perform. These limitations have largely kept epigenomic analyses out of the reach of the clinical studies of human diseases, including autoimmunity. Here we propose to develop and apply a revolutionary new method called ATAC-Seq to map open chromatin sites genome-wide, to enable facile and rapid epigenomic studies of patients with autoimmune diseases and their response to treatments in real time. We will also explore the role of epigenetics in known genotypes of SLE patients with single nucleotide polymorphisms in genes such as Tyk2, STAT4, and IRF5. The end result will be a set of robust biomarkers and important biological insights into autoimmune and inflammatory diseases. The long term goal of our studies is to include ATAC-Seq in the ACE Shared Research Agenda, where it can be used by ACE investigators as part of their basic science projects, and as a mechanistic assay in ACE clinical trials.

Public Health Relevance

Autoimmune diseases are associated with altered activities of cells of the immune system, which are driven by changes in the sets of genes that become active in immune cells. Understanding which genes are active and why will allow much more precise tracking and treatment of autoimmune diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI110491-02
Application #
8842926
Study Section
Special Emphasis Panel (ZAI1-PA-I)
Project Start
Project End
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
2
Fiscal Year
2015
Total Cost
$143,633
Indirect Cost
$54,142
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Cheung, Peggie; Vallania, Francesco; Warsinske, Hayley C et al. (2018) Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 173:1385-1397.e14
Rosenberg, Jacob M; Maccari, Maria E; Barzaghi, Federica et al. (2018) Neutralizing Anti-Cytokine Autoantibodies Against Interferon-? in Immunodysregulation Polyendocrinopathy Enteropathy X-Linked. Front Immunol 9:544
Lu, Daniel R; McDavid, Andrew N; Kongpachith, Sarah et al. (2018) T Cell-Dependent Affinity Maturation and Innate Immune Pathways Differentially Drive Autoreactive B Cell Responses in Rheumatoid Arthritis. Arthritis Rheumatol 70:1732-1744
Bongen, Erika; Vallania, Francesco; Utz, Paul J et al. (2018) KLRD1-expressing natural killer cells predict influenza susceptibility. Genome Med 10:45
Elliott, Serra E; Kongpachith, Sarah; Lingampalli, Nithya et al. (2018) Affinity Maturation Drives Epitope Spreading and Generation of Proinflammatory Anti-Citrullinated Protein Antibodies in Rheumatoid Arthritis. Arthritis Rheumatol 70:1946-1958
Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina et al. (2017) Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array. ACS Nano 11:8864-8870
Haddon, D James; Wand, Hannah E; Jarrell, Justin A et al. (2017) Proteomic Analysis of Sera from Individuals with Diffuse Cutaneous Systemic Sclerosis Reveals a Multianalyte Signature Associated with Clinical Improvement during Imatinib Mesylate Treatment. J Rheumatol 44:631-638
Degn, Søren E; van der Poel, Cees E; Firl, Daniel J et al. (2017) Clonal Evolution of Autoreactive Germinal Centers. Cell 170:913-926.e19
de Bourcy, Charles F A; Dekker, Cornelia L; Davis, Mark M et al. (2017) Dynamics of the human antibody repertoire after B cell depletion in systemic sclerosis. Sci Immunol 2:
Perkins, Tiffany; Rosenberg, Jacob M; Le Coz, Carole et al. (2017) Smith-Magenis Syndrome Patients Often Display Antibody Deficiency but Not Other Immune Pathologies. J Allergy Clin Immunol Pract 5:1344-1350.e3

Showing the most recent 10 out of 28 publications