The staggering global toll taken by infectious diseases calls for vastly more effective monitoring, as well as new preventative and therapeutic measures. To address critical gaps in our knowledge about the basic biology of key pathogens and their interactions with their hosts and insect vectors, we will create a Genomic Center for Infectious Diseases (GCID). Our team combines an extensive track record of developing and applying groundbreaking laboratory and analytical methods with experience managing large and complex projects to produce resources for the infectious disease research community. We will use genomic methods to define the extent of variation among organisms, as well as among microbial communities. Our viral research will focus on the NIAID Category A priority pathogens Lassa and Dengue viruses, and the Category B priority pathogen West Nile virus, as well on surveillance for fever-causing viruses in tropical developing countries. Bacterial studies will focus on the Category C priority pathogens M. tuberculosis and Carbapenem-resistant Enterobacteriaceae, an emerging cause of nocosomial infections associated with high mortality, as well as the costly Uropathogenic E. coli. Fungal research will focus on major pathogens with significant clinical impact, C. neoformans and C. albicans, as well as strains causing recent fungal outbreaks, including C. gattii and Fusarium spp. We will also study both the malaria-causing parasite P. falciparum and its mosquito vector, A. gambiae. In studying these particular high-priority pathogens as model systems, we will produce, and train community members to use, new methods of wide utility. We will sequence natural isolates as well as laboratory-derived mutants, and associate sequence differences with phenotypes to help interpret the functional consequences of this variation with respect to virulence, transmission and drug sensitivity. Working at several levels, from populations to whole organisms, and animal models to single cells, we will reveal the long term (evolutionary) responses to pathogen and host interactions and exposure to drugs or insecticides as well as the immediate (transcriptional) responses of host and pathogens to infection. These responses define potential new opportunities for interventions to disrupt the cycle of infection and transmission. In bringing together outstanding investigators in infectious disease with cutting edge laboratory and analytical methods and experienced leaders in genomics, we will generate the information needed to create new tools to track, diagnose, treat and prevent infectious diseases.

Public Health Relevance

Infectious diseases continue to take a staggering social and economic toll on our global population. We will establish a center that will employ powerful, cutting edge technologies to probe the biology of a variety of dangerous pathogens and their interactions with their hosts. The information will directly inform new methods to monitor, prevent and treat infectious diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel ()
Program Officer
Dugan, Vivien Grace
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Broad Institute, Inc.
United States
Zip Code
Diehl, William E; Lin, Aaron E; Grubaugh, Nathan D et al. (2016) Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic. Cell 167:1088-1098.e6
Colubri, Andres; Silver, Tom; Fradet, Terrence et al. (2016) Transforming Clinical Data into Actionable Prognosis Models: Machine-Learning Framework and Field-Deployable App to Predict Outcome of Ebola Patients. PLoS Negl Trop Dis 10:e0004549
Malinga, Lesibana A; Abeel, Thomas; Desjardins, Christopher A et al. (2016) Draft Genome Sequences of Two Extensively Drug-Resistant Strains of Mycobacterium tuberculosis Belonging to the Euro-American S Lineage. Genome Announc 4:
Issi, Luca; Farrer, Rhys A; Pastor, Kelly et al. (2016) Members of the Zinc Cluster Factor Family Alters Virulence in Candida albicans. Genetics :
Anderson, Matthew Z; Porman, Allison M; Wang, Na et al. (2016) A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues. PLoS Genet 12:e1006353
Colgrove, Robert C; Liu, Xueqiao; Griffiths, Anthony et al. (2016) History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains. Virology 487:215-21
Grant, Sarah Schmidt; Wellington, Samantha; Kawate, Tomohiko et al. (2016) Baeyer-Villiger Monooxygenases EthA and MymA Are Required for Activation of Replicating and Non-replicating Mycobacterium tuberculosis Inhibitors. Cell Chem Biol 23:666-77
Tewhey, Ryan; Kotliar, Dylan; Park, Daniel S et al. (2016) Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell 165:1519-29
Zhang, Danfeng; Gomez, James E; Chien, Jung-Yien et al. (2016) Genomic analysis of the evolution of fluoroquinolone resistance in Mycobacterium tuberculosis prior to tuberculosis diagnosis. Antimicrob Agents Chemother :
Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K et al. (2016) In vivo Ebola virus infection leads to a strong innate response in circulating immune cells. BMC Genomics 17:707

Showing the most recent 10 out of 50 publications