Malaria exerts the largest burden on global health of any disease caused by a eukaryotic parasite, and is responsible for approximately 600,000 deaths a year. Recent gains have been made in controlling malaria, but the proclivity for malaria parasites and their Anopheline mosquito vectors to evolve resistance to drugs and insecticides means that tools are needed to preserve the efficacy of existing therapeutics and control measures, and that investment in basic research is necessary to keep development pipelines stocked with new candidate drugs, vaccines, and insecticides. We propose to advance these efforts by coupling innovative applications of genomic technologies with key questions in the fields of malaria transmission, pathogenesis, and therapeutics. Our projects were specifically designed to leverage resources and expertise not commonly found outside of genome sequencing centers, and involve collaborations with leading investigators in the field. We will employ 16S sequencing, whole genome shotgun sequencing, and GWAS to test a hypothesis that mosquito innate immune genes play a role in shaping mosquito microbiome communities, which have been demonstrated to affect vectorial capacity (Aim 1). We will employ extremely sensitive single-cell transcriptomic profiling to bridge a key knowledge gap in the cues that cause P. falciparum parasites to commit to sexual differentiation, which is essential for transmission (Aim 2). We will create de novo assemblies of unprecedented quality to explore the heretofore uncharacterized genomic dark matter'of Plasmodium subtelomeres, where important antigenic gene families mediating pathogenesis reside and evolve (Aim 3). Finally, we will employ hybrid selection to enrich and sequence Plasmodium DNA from a critical 10 year longitudinal collection of clinical malaria samples from northwestern Thailand, a region where resistance to the current first line drug therapy (artemesinin) has recently arisen (Aim 4). We hypothesize that changes in allele frequency associated with resistance will be detectable in a longitudinal selection screen. The work we propose will not only push the frontier of malaria genomics into bold new territories, but generate empirical and analytical approaches applicable to a broad range of diseases.

Public Health Relevance

Malaria is a global disease that threatens the health of 3.3 billion people in 100 nations. We will use genomic approaches to preserve the efficacy of the current first line drugs for malaria through identification of markers associated with resistance. We will also better define the basic biology of disease transmission to enable the development of new transmission-blocking disease control measures, and investigate diversity generation in antigenic genes, which enable parasites to evade natural immune responses

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel ()
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Broad Institute, Inc.
United States
Zip Code
Diehl, William E; Lin, Aaron E; Grubaugh, Nathan D et al. (2016) Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic. Cell 167:1088-1098.e6
Colubri, Andres; Silver, Tom; Fradet, Terrence et al. (2016) Transforming Clinical Data into Actionable Prognosis Models: Machine-Learning Framework and Field-Deployable App to Predict Outcome of Ebola Patients. PLoS Negl Trop Dis 10:e0004549
Malinga, Lesibana A; Abeel, Thomas; Desjardins, Christopher A et al. (2016) Draft Genome Sequences of Two Extensively Drug-Resistant Strains of Mycobacterium tuberculosis Belonging to the Euro-American S Lineage. Genome Announc 4:
Issi, Luca; Farrer, Rhys A; Pastor, Kelly et al. (2016) Members of the Zinc Cluster Factor Family Alters Virulence in Candida albicans. Genetics :
Anderson, Matthew Z; Porman, Allison M; Wang, Na et al. (2016) A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues. PLoS Genet 12:e1006353
Colgrove, Robert C; Liu, Xueqiao; Griffiths, Anthony et al. (2016) History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains. Virology 487:215-21
Grant, Sarah Schmidt; Wellington, Samantha; Kawate, Tomohiko et al. (2016) Baeyer-Villiger Monooxygenases EthA and MymA Are Required for Activation of Replicating and Non-replicating Mycobacterium tuberculosis Inhibitors. Cell Chem Biol 23:666-77
Tewhey, Ryan; Kotliar, Dylan; Park, Daniel S et al. (2016) Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell 165:1519-29
Zhang, Danfeng; Gomez, James E; Chien, Jung-Yien et al. (2016) Genomic analysis of the evolution of fluoroquinolone resistance in Mycobacterium tuberculosis prior to tuberculosis diagnosis. Antimicrob Agents Chemother :
Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K et al. (2016) In vivo Ebola virus infection leads to a strong innate response in circulating immune cells. BMC Genomics 17:707

Showing the most recent 10 out of 50 publications