The Data Management, Analysis and Resources Dissemination Core will support the goals of the Broad Genomic Center for Infectious Diseases (GCID) by providing the software infrastructure and tools required for resource and data management, tracking, analysis and dissemination. The Data Core will leverage existing systems and the significant expertise of its personnel to establish and maintain an efficient resource and sample management process, develop a central data management and analysis infrastructure to support the scientific goals of the center, and ensure that high quality data are released rapidly to the scientific community in accordance with NIAID guidelines and instructions. The software infrastructure will flexibly and scalably support large-scale genome assembly, annotation, variant identification, transcriptome reconstruction, phylogenetic and functional comparisons and metagenomic data processing and analysis

Public Health Relevance

The Data Core will be an essential component of the GCID providing the component projects with a set of common production processes supported by a robust compute infrastructure that enables high-throughput sample tracking, metadata and data management, large scale analysis and the rapid release of high quality data and associated resources.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI110818-03
Application #
9061588
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Broad Institute, Inc.
Department
Type
DUNS #
623544785
City
Cambridge
State
MA
Country
United States
Zip Code
Donaldson, G P; Ladinsky, M S; Yu, K B et al. (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795-800
Fernandes, Kenya E; Brockway, Adam; Haverkamp, Miriam et al. (2018) Phenotypic Variability Correlates with Clinical Outcome in Cryptococcus Isolates Obtained from Botswanan HIV/AIDS Patients. MBio 9:
Muñoz, José F; Gade, Lalitha; Chow, Nancy A et al. (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 9:5346
Lebreton, François; Valentino, Michael D; Schaufler, Katharina et al. (2018) Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. J Antimicrob Chemother 73:1479-1486
Yadav, Vikas; Sun, Sheng; Billmyre, R Blake et al. (2018) RNAi is a critical determinant of centromere evolution in closely related fungi. Proc Natl Acad Sci U S A 115:3108-3113
Hommel, Benjamin; Mukaremera, Liliane; Cordero, Radames J B et al. (2018) Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog 14:e1006982
Muñoz, José F; McEwen, Juan G; Clay, Oliver K et al. (2018) Genome analysis reveals evolutionary mechanisms of adaptation in systemic dimorphic fungi. Sci Rep 8:4473
Zhang, Wei; Lun, Shichun; Wang, Shu-Huan et al. (2018) Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors Against Mycobacterium Tuberculosis. J Med Chem :
Rhodes, Johanna; Abdolrasouli, Alireza; Farrer, Rhys A et al. (2018) Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect 7:43
Sephton-Clark, Poppy C S; Muñoz, Jose F; Ballou, Elizabeth R et al. (2018) Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 3:

Showing the most recent 10 out of 95 publications