This proposal will use human gastrointestinal organoids as a model system. We will integrate state-of-the-art methodologies, with collaborative and synergistic research approaches to the study of gastrointestinal diseases. We will develop in vitro gastrointestinal models that replicate the biological structures of the human intestinal tract. These tissues will recapitulate human physiology and disease pathology, and incorporate components critical to disease and human host response. Our focus will span the pipeline from basic research (pathogenesis) to product development. For gastrointestinal pathogens that have no relevant animal models, another long-term goal is to develop model systems that can be used in IND-enabling studies. We will advance the field through the following Specific Aims:
Aim 1. Title: Mechanisms of H. pylori-host infection using human gastric organoids. Research Project 1 will use the newly developed gastric organoid system to study Helicobacter pylori. The proposed studies have the potential to advance our understanding of the mechanisms by which H. pylori alters gastric stem cell fate, and advance our understanding of the role of H. pylori as a carcinogen.
Aim 2. Title: Human Intestinal Organoids to Study Toxigenic Bacterial Pathogens. Research Project II will use human intestinal organoids as a novel model system to study two toxigenic enteric pathogens, Clostridium difficile and Shiga toxin (Stx) producing Escherichia coli (STEC). The proposed studies have the potential to advance our understanding of the pathogenic processes of C. difficile and STEC and create model systems for the evaluation of potential therapeutics.
Aim 3. Title: Human gastroids and colonoids as 4D models of gastrointestinal infection. Research Project III will develop ex vivo models to determine age-dependent and temporal GI epithelial responses to: a) H. pylori infection in human gastric organoids (HGOs) and gastroids and b) Clostridium difficile (CD) and Shiga toxin-producing Escherichia coli (STEC) infection and their major toxins in human colonic organoids (HCOs) and colonoids.
Aim 4. Technology dissemination. We will advance and encourage educational and training activities to investigators currently affiliated with this proposal, investigators funded through other NAMSED awards, and interested members of the scientific community in general.
Aim 5. Organoid Engineering Core. The human organoid core will develop reporter lines in which fluorescent proteins are expressed in specific lineages. shRNA knockdown and CRISPR targeted lines will give rise to human gastro-intestinal organoids lacking specific lineages, and tetracycline-regulated systems will be used to expand specific lineages.

Public Health Relevance

Even in the 21st Century, infectious gastrointestinal diseases remain a significant cause of morbidity and mortality, with billions of cases occurring worldwide annually; however, even though the problem is significant, advancements in research and development of new therapeutics for enteric diseases have not met needs. The overall objective of this proposal is to develop human gastrointestinal organoids as model systems to address transformative questions regarding gastrointestinal infectious diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI116491-01
Application #
8856069
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Ranallo, Ryan
Project Start
2015-03-01
Project End
2020-02-29
Budget Start
2015-03-01
Budget End
2016-02-29
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Cincinnati
Department
Genetics
Type
Schools of Medicine
DUNS #
041064767
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
Zavros, Yana (2017) Initiation and Maintenance of Gastric Cancer: A Focus on CD44 Variant Isoforms and Cancer Stem Cells. Cell Mol Gastroenterol Hepatol 4:55-63
McCracken, Kyle W; Aihara, Eitaro; Martin, Baptiste et al. (2017) Wnt/?-catenin promotes gastric fundus specification in mice and humans. Nature 541:182-187
McCauley, Heather A; Wells, James M (2017) Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144:958-962
McCracken, Kyle W; Wells, James M (2017) Mechanisms of embryonic stomach development. Semin Cell Dev Biol 66:36-42
Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi et al. (2017) Guidelines for Genome-Scale Analysis of Biological Rhythms. J Biol Rhythms 32:380-393
MĂșnera, Jorge O; Sundaram, Nambirajan; Rankin, Scott A et al. (2017) Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell 21:51-64.e6
Sinagoga, Katie L; Stone, William J; Schiesser, Jacqueline V et al. (2017) Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development 144:2402-2414
Karve, Sayali S; Pradhan, Suman; Ward, Doyle V et al. (2017) Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli. PLoS One 12:e0178966
Rosselot, Andrew E; Hong, Christian I; Moore, Sean R (2016) Rhythm and bugs: circadian clocks, gut microbiota, and enteric infections. Curr Opin Gastroenterol 32:7-11
Dedhia, Priya H; Bertaux-Skeirik, Nina; Zavros, Yana et al. (2016) Organoid Models of Human Gastrointestinal Development and Disease. Gastroenterology 150:1098-1112

Showing the most recent 10 out of 14 publications