This core is a central resource to support clinical trials and physics research and MD Anderson Cancer Center (MDACC). Core B provides the following services: (1) support for proton and photon treatment planning;(2) quality assurance and delivery of treatments for patients enrolled in the clinical trials of Projects 1 and 2;(3) robustness evaluation and robust optimization of the proton treatment plans and treatment delivery for IMPT;(4) measurements for experimental verification and validation of computed dose distributions;(5) clinical physics support for credentialing for the trials described in Projects 1 and 2;and (6) dose computations with highly accurate methods including those employing Monte Carlo techniques. This core will also maintain, enhance and support the use of computational and optimization hardware and software infrastructure for treatment planning and QA for Projects 1 and 2 and for physics research in Projects 3 and 4. This core supports the mission of the NCI to improve the treatment and continuing care of cancer patients.

Public Health Relevance

This research aims to improve radiation treatment for cancer patients by improving our ability to direct the radiation at the tumor to spare adjacent normal tissue by using protons (charged particles) with intensity- modulated proton therapy. This can potentially improve cancer cure rates, reduce side effects, or both, depending on the clinical scenario. With an increasing number of proton centers in the United States and abroad, the research in this program project is increasingly important for public health.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Botas, Pablo; Grassberger, Clemens; Sharp, Gregory et al. (2018) Density overwrites of internal tumor volumes in intensity modulated proton therapy plans for mobile lung tumors. Phys Med Biol 63:035023
Guan, Fada; Geng, Changran; Ma, Duo et al. (2018) RBE Model-Based Biological Dose Optimization for Proton Radiobiology Studies. Int J Part Ther 5:160-171
Liao, Zhongxing; Simone 2nd, Charles B (2018) Particle therapy in non-small cell lung cancer. Transl Lung Cancer Res 7:141-152
Blanchard, Pierre; Gunn, Gary Brandon; Lin, Alexander et al. (2018) Proton Therapy for Head and Neck Cancers. Semin Radiat Oncol 28:53-63
Chen, Yizheng; Grassberger, Clemens; Li, Junli et al. (2018) Impact of potentially variable RBE in liver proton therapy. Phys Med Biol 63:195001
Geng, Changran; Gates, Drake; Bronk, Lawrence et al. (2018) Physical parameter optimization scheme for radiobiological studies of charged particle therapy. Phys Med 51:13-21
Liao, Zhongxing; Lee, J Jack; Komaki, Ritsuko et al. (2018) Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer. J Clin Oncol 36:1813-1822
Yepes, Pablo; Adair, Antony; Grosshans, David et al. (2018) Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy. Phys Med Biol 63:045003
Unkelbach, Jan; Paganetti, Harald (2018) Robust Proton Treatment Planning: Physical and Biological Optimization. Semin Radiat Oncol 28:88-96
Vassiliev, Oleg N; Kry, Stephen F; Grosshans, David R et al. (2018) Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications. Phys Med Biol 63:055007

Showing the most recent 10 out of 47 publications