We propose an integrated multiple-PI Project to systematically discover and replicate additional common genetic variants associated with breast cancer, assess their biological significance, and develop evidence based assessments of the clinical validity of prediction algorithms using these variants, and their suitability for translation into clinical practice. In sub-Project 1 we will combine the resources of (a) major GWAS for breast cancer amounting to >15,000 cases and (b) three pre-existing Consortia with over 48,000 additional cases to provide the large sample size needs necessary in the replication phase of GWAS. We will fine map the associated loci in collaboration with the major Consortia conducting GWAS for breast cancer in Asian and African-American women. In sub-Project 2 we will conduct a series of investigations to (a) assign a gene function to each replicated risk variant by measuring expression of 24,000 RNA transcripts in breast tumor tissue and normal tissue, from women for whom we also have an lllumina 540 GWAS available;by identifying networks of genes in which alterations of expression can be linked to specific germline risk variants;and by using Chromosomal Conformation Capture assays to examine whether associated intergenic regions fold physically in a way that brings them into contact with distant genie regions. We will also (b) examine whether loss or gain of function of the genes implicated in (a) in breast epithelial cells or stromal cells alter phenotypes in vitro in a 3-D model of breast morphogenesis and oncogenesis. In sub- Project 3, we will develop breast cancer prediction models that can be used to stratify women according to breast cancer risk. We will attempt to discover gene-gene interactions by reanalyzing the GWAS data, and we will systematically examine the genome-wide significant gene variants for effect modification by established breast cancer risk factors, using the largest set of prospective studies available. We will develop and refine risk models that incorporate both the germline risk factors and the established non-genetic risk factors, and also assess these in a cohort of women with higher familial risk of breast cancer (to specifically address the clinical needs of women at high risk due to a strong family history of breast cancer). Finally, we will analyze data from the major trials of primary prevention of breast cancer to address the question of whether the protective effect of tamoxifen is altered by risk status for our prediction models, data with a direct bearing on clinical decision-making with respect to chemoprevention for women at known high risk.

Public Health Relevance

The proposed Project is highly relevant to the translation of discoveries from existing Genome-Wide Association Studies into useful clinical activities. We will discover additional breast cancer associated loci, attempt to narrow the number of potentially causal variants at each locus, assess the biological mechanism behind the implicated genes, and assemble the associated variants into risk prediction algorithms that we will rigorously test for clinical validity.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-4 (J1))
Program Officer
Rogers, Scott
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Public Health & Prev Medicine
Schools of Public Health
United States
Zip Code
Gao, Guimin; Pierce, Brandon L; Olopade, Olufunmilayo I et al. (2017) Trans-ethnic predicted expression genome-wide association analysis identifies a gene for estrogen receptor-negative breast cancer. PLoS Genet 13:e1006727
Cuzick, Jack; Brentnall, Adam R; Segal, Corrinne et al. (2017) Impact of a Panel of 88 Single Nucleotide Polymorphisms on the Risk of Breast Cancer in High-Risk Women: Results From Two Randomized Tamoxifen Prevention Trials. J Clin Oncol 35:743-750
Feng, Yen-Chen Anne; Cho, Kelly; Lindstrom, Sara et al. (2017) Investigating the genetic relationship between Alzheimer's disease and cancer using GWAS summary statistics. Hum Genet 136:1341-1351
Zuber, Verena; Bettella, Francesco; Witoelar, Aree et al. (2017) Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer. BMC Genomics 18:270
Milne, Roger L (see original citation for additional authors) (2017) Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 49:1767-1778
Shimelis, Hermela; Mesman, Romy L S; Von Nicolai, Catharina et al. (2017) BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Res 77:2789-2799
Muranen, Taru A; Greco, Dario; Blomqvist, Carl et al. (2017) Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genet Med 19:599-603
Ugalde-Morales, Emilio; Li, Jingmei; Humphreys, Keith et al. (2017) Common shared genetic variation behind decreased risk of breast cancer in celiac disease. Sci Rep 7:5942
Wang, Jun; Heng, Yujing J; Eliassen, A Heather et al. (2017) Alcohol consumption and breast tumor gene expression. Breast Cancer Res 19:108
Scannell Bryan, Molly; Argos, Maria; Andrulis, Irene L et al. (2017) Limited influence of germline genetic variation on all-cause mortality in women with early onset breast cancer: evidence from gene-based tests, single-marker regression, and whole-genome prediction. Breast Cancer Res Treat 164:707-717

Showing the most recent 10 out of 137 publications