Our broad term objective is two-fold: to understand how extracellular RNA (exRNA) modulates the phenotype of normal cells in the tumor environment and to generate new experimental modalities that can elucidate mechanisms underlying this form of communication among cells. Specifically we will focus on understanding how exRNA released from glioblastoma cells modulates the phenotype of normal cells in the vicinity of the tumor. Our overall specific aims will encompass:
Aim 1 - Elucidation of basic molecular and cellular mechanisms of exRNA biogenesis by GBM cells, and uptake and function in normal brain cells, using existing and emerging technologies to manipulate these processes.
Aim 2 - Full characterization of the exRNA content and intracellular RNA content of human GBM cells, as well as the intracellular RNA content of normal brain cells, and evaluation of functional transfer of exRNAs from GBM cells to brain cells in culture and in GBM mouse brain models.
Aim 3 - Evaluation of transfer and fate of exRNA in brain cells, including visualizing RNA transfer in EVs, monitoring mRNA translation and miRNA functions, determining possible genomic integration of transposable elements/oncogenes, and evaluation of effects of non-coding exRNAs on status of genome methylation.
Aim 4 - Description of the dependence of exRNA cargo composition, formation and release dynamics as a function of GBM genotype, including activation of EGFR and PDGFRa signaling pathways, the two most common genetic events in human GBM tumors, as well as changes in GBM exRNA in response to radiation and drug treatment.
Aim 5 - Development of regulators and reporters of exRNA release and uptake by tailoring fluorescent and other visual labels, vectors, mouse models and reagents for broad applications in monitoring exRNA release, uptake and function in culture and in vivo.
These aims will be supported by a shared imaging core carrying our intravital imaging of extracellular vesicles and their interaction with endogenous cells in the brain.

Public Health Relevance

An insidious aspect of cancer is its ability to subvert normal cells to promote tumor growth. This process is believed to be mediated in large part through RNA vehicles released by tumor cells and taken up by normal cells. Understanding this subversive mechanism will allow development of novel therapeutic interventions to curtail cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program--Cooperative Agreements (U19)
Project #
4U19CA179563-04
Application #
9124858
Study Section
Special Emphasis Panel (ZRG1-OBT-S (50)R)
Program Officer
Howcroft, Thomas K
Project Start
2013-09-01
Project End
2018-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
4
Fiscal Year
2016
Total Cost
$1,581,106
Indirect Cost
$279,858
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Ricklefs, Franz L; Alayo, Quazim; Krenzlin, Harald et al. (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4:eaar2766
Zhou, Shuang; Appleman, Vicky A; Rose, Christopher M et al. (2018) Chronic platelet-derived growth factor receptor signaling exerts control over initiation of protein translation in glioma. Life Sci Alliance 1:e201800029
Reátegui, Eduardo; van der Vos, Kristan E; Lai, Charles P et al. (2018) Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun 9:175
Boussiotis, Vassiliki A; Charest, Alain (2018) Immunotherapies for malignant glioma. Oncogene 37:1121-1141
Marangoni, Francesco; Zhang, Ruan; Mani, Vinidhra et al. (2018) Tumor Tolerance-Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin. J Immunol 200:3647-3661
Gustafsson, Gabriel; Lööv, Camilla; Persson, Emma et al. (2018) Secretion and Uptake of ?-Synuclein Via Extracellular Vesicles in Cultured Cells. Cell Mol Neurobiol 38:1539-1550
György, Bence; Lööv, Camilla; Zaborowski, Miko?aj P et al. (2018) CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Mol Ther Nucleic Acids 11:429-440
Shao, Huilin; Im, Hyungsoon; Castro, Cesar M et al. (2018) New Technologies for Analysis of Extracellular Vesicles. Chem Rev 118:1917-1950
Maas, Sybren L N; Breakefield, Xandra O; Weaver, Alissa M (2017) Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol 27:172-188
Wu, Anthony Yan-Tang; Lai, Charles Pin-Kuang (2017) Tracking Extracellular Vesicles Delivery and RNA Translation Using Multiplexed Reporters. Methods Mol Biol 1660:255-265

Showing the most recent 10 out of 37 publications