The Center for Nanobiology and Predictive Toxicology has assembled a multidisciplinary team with expertise in nanomaterial science, toxicology, cell biology, high throughput screening, biostatistics, mathematics and computer science with the overall goal of gaining fundamental understanding of how the physical and Chemical properties of carefully selected ENM libraries relate to interactions with cells and cellular structures, including how these bio-physicochemical interactions at the nano-bio interface may lead to pulmonary toxicity. This goal will be executed through the acquisition, synthesis and characterization of compositional and combinatorial ENM libraries that focus on the major physicochemical properties of nominated metal, metal oxide and silica nanoparticles {Scientific Core), hypothesized to play a role in pulmonary toxicity through the generation of oxidative stress, inflammation, signal pathway activation and membrane lysis. These efforts will be assisted by in silico modeling that use heatmaps, mathematical models and machine learning to perform hazard ranking and risk prediction. The major objectives of the Center are: (i) To establish an overarching predictive toxicological paradigm, which is defined as the assessment of in vivo toxic potential of ENM based on in vitro and in silico methods (integrated center effort);(ii) To establish rapid throughput cellular screening and conduct imaging to identify compositional and combinatorial ENM properties that lead to bioavailability and engagement of the injury pathways discussed above (Project 1);(iii) To establish through the performance of instillation and inhalation exposures in the rodent lung how the structure-property relationships linking ENM to in vitro injury mechanisms may be predictive of pulmonary inflammation, fibrosis and cytotoxicity in a dose-dependent fashion (Project 2);(iv) To develop in silico toxicity models that utilize multivariate analysis of the rapid throughput screening and cellular imaging data to show the relationships that can be used to develop "nano-QSARs" for probabilistic risk ranking (Project 3).

Public Health Relevance

We propose a center to study how properties of engineered nanomaterials may lead to lung health effects by creating harmful interactions in cells and tissues that will come into contact with these materials. This will be accomplished by a multi-disciplinary team who will use their expertise in nanomaterial science, biology, toxicology, imaging, statistics and computer science to integrate above goals into a predictive model that projects from what is happening in cells to what may happen in the lung.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-SET-V (03))
Program Officer
Nadadur, Srikanth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Internal Medicine/Medicine
Schools of Medicine
Los Angeles
United States
Zip Code
Lin, Sijie; Wang, Xiang; Ji, Zhaoxia et al. (2014) Aspect ratio plays a role in the hazard potential of CeO2 nanoparticles in mouse lung and zebrafish gastrointestinal tract. ACS Nano 8:4450-64
Zhang, Haiyuan; Pokhrel, Suman; Ji, Zhaoxia et al. (2014) PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co?O? p-type semiconductor in cells and the lung. J Am Chem Soc 136:6406-20
Wang, Xiang; Ji, Zhaoxia; Chang, Chong Hyun et al. (2014) Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10:385-98
Patel, T; Telesca, D; Low-Kam, C et al. (2014) Relating Nanoparticle Properties to Biological Outcomes in Exposure Escalation Experiments. Environmetrics 25:57-68
Chen, Yue; Wang, Zhe; Xu, Ming et al. (2014) Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS Nano 8:5813-25
Nel, Andre E; Nasser, Elina; Godwin, Hilary et al. (2013) A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment. ACS Nano 7:6422-33
Lin, Sijie; Zhao, Yan; Nel, Andre E et al. (2013) Zebrafish: an in vivo model for nano EHS studies. Small 9:1608-18
Jiang, Shan; Cheng, Rui; Wang, Xiang et al. (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 4:2225
Pokhrel, Suman; Nel, Andre E; Madler, Lutz (2013) Custom-designed nanomaterial libraries for testing metal oxide toxicity. Acc Chem Res 46:632-41
Nel, A E (2013) Implementation of alternative test strategies for the safety assessment of engineered nanomaterials. J Intern Med 274:561-77

Showing the most recent 10 out of 35 publications