Nanomaterial Inhalational Exposure and Potential Health Effects Engineered nanomaterials (ENMs) are an emerging category of materials that are finding increasing use in the areas of imaging, electronics and therapeutics;however, they are already part of a widening number of products that are commonly used such as computer chips, cosmetics, clothing and dietary supplements. Even though these ENMs may prove to be beneficial, there have been concerns raised regarding their potential health risks. Although these particles have been studied for the last few decades, only recently has the potential toxicity of ENMs been researched in a serious way. This issue of toxicity has been recently highlighted by the case report of 7 female factory workers exposed to nanoparticles during their work for 5-13 months who developed lung damage with pulmonary fibrosis and inflammation^, although there may have been other factors involved in these unfortunate cases. People that may be exposed to ENMs include workers, consumers and the general public through a number of ways that include by skin or by the gastrointestinal route or through the eyes, but the inhaled route remains potentially the most important one. The inhaled route is also an important one for a number of applicafions for ENMs including imaging agents, gene therapy and therapeufic drug delivery to infected or tumour sites.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program--Cooperative Agreements (U19)
Project #
7U19ES019536-05
Application #
8675857
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
5
Fiscal Year
2014
Total Cost
$262,615
Indirect Cost
$18,242
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Chen, Shu; Hu, Sheng; Smith, Elizabeth F et al. (2014) Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application. Biomaterials 35:4729-38
Leo, Bey Fen; Chen, Shu; Kyo, Yoshihiko et al. (2013) The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47:11232-40
Chen, Shu; Goode, Angela E; Sweeney, Sinbad et al. (2013) Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale 5:9839-47
Sarkar, Srijata; Song, Youngmia; Sarkar, Somak et al. (2012) Suppression of the NF-?B pathway by diesel exhaust particles impairs human antimycobacterial immunity. J Immunol 188:2778-93