The overall goal of this proposal it to develop structure-based approaches to discover new G protein coupled receptor (GPCR) ligands having new signaling properties and specificities. GPCRs are involved in regulating virtually every aspect of physiology and are pivotal targets for drug discovery. Until now, ligand discovery efforts for GPCR has been empirically driven, and though this has had successes, it has restricted the field to sites precedented by canonical, often natural ligands. Considering the remarkable progress in identifying new GPCRs over the past two decades, drug discovery for this family of receptors using classical approaches has been disappointing. Most available ligands act at orthosteric sites, competing directly with the natural hormones and neurotransmitters. In the rare circumstances that they bind allosterically, their discovery has been fortuitous, their optimization difficult, as has been the dissection of their signaling. The recent efflorescence of GPCR X-ray structures was followed by the application ligand docking methods demonstrating the feasibility of this approach for the discovery of novel orthosteric ligand chemotypes for several GPCRs. We propose an integrated program of structure-based exploitation of GPCRs for new ligand chemotypes with an emphasis on allosteric ligands, their testing for new signaling properties, the determination of their structures bound to their GPCRs, and their optimization for affinity and signaling. This proposal builds on a network of existing collaborations among the labs of Kobilka, Shoichet, Sunahara and Gmeiner over the past four years. These four investigators bring together a unique combination of expertise in GPCR structural biology, ligand docking, GPCR pharmacology and function, and medicinal chemistry. Preliminary studies from this group demonstrate the feasibility and potential value of this approach.

Public Health Relevance

This Program Project will develop new approaches to develop more selective and effective drugs for GPCRs, which are the largest family of membrane proteins in the human genome. Drugs acting on GPCRs can have an impact on a broad spectrum of diseases including: cardiovascular disease, pulmonary disease, inflammation, diabetes and obesity, behavioral disorders and Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19GM106990-01
Application #
8550870
Study Section
Special Emphasis Panel (ZRG1-BST-J (40))
Program Officer
Dunsmore, Sarah
Project Start
2013-09-15
Project End
2018-05-31
Budget Start
2013-09-15
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$1,314,924
Indirect Cost
$247,674
Name
Stanford University
Department
Biophysics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Kruse, Andrew C; Kobilka, Brian K; Gautam, Dinesh et al. (2014) Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 13:549-60
Thorsen, Thor Seneca; Matt, Rachel; Weis, William I et al. (2014) Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor Crystallogenesis. Structure 22:1657-64
Kruse, Andrew C; Ring, Aaron M; Manglik, Aashish et al. (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101-6