AP1 This associate program of PMS-ICBG will characterize the mollusk biodiversity of the Philippines and will provide the animal materials that form the basis of our drug discovery program. The Philippines is one of 25 global hotspots for biodiversity. Mollusks represent a substantial portion of this biodiversity comprising at least 11,000 species that represent 20% of all known marine mollusks and 5% of known terrestrial mollusks.
We aim to characterize novel biodiversity and to provide tools to allow species to be readily recognized. This activity will facilitate approaches to conservation and habitat preservation. To achieve these goals, we plan to: 1) Survey mollusks in critical habitats; 2) Support development of museum collections; 3) Create a comprehensive Philippine mollusk species list; 4) Provide training in the Philippines to support systematics and curation activities; 5) Perform phylogenetic analysis of selected mollusk clades.

Public Health Relevance

AP1 This associate program of the PMS-ICBG will provide the animal material needed to produce the natural products described in AP3 and AP4. In turn, these compounds will be screened for their pharmaceutical potential in treating human health conditions that include, but are not limited to: neurological conditions, cancers, including pancreatic cancer and glioblastoma, pandrug-resistant bacterial infections, and infections by apicomplexan parasites.

Agency
National Institute of Health (NIH)
Institute
Fogarty International Center (FIC)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19TW008163-06
Application #
8783902
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (50))
Project Start
Project End
Budget Start
2014-08-26
Budget End
2015-07-31
Support Year
6
Fiscal Year
2014
Total Cost
$280,943
Indirect Cost
$101,217
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Torres, Joshua P; Tianero, Maria Diarey; Robes, Jose Miguel D et al. (2017) Stenotrophomonas-Like Bacteria Are Widespread Symbionts in Cone Snail Venom Ducts. Appl Environ Microbiol 83:
Distel, Daniel L; Altamia, Marvin A; Lin, Zhenjian et al. (2017) Discovery of chemoautotrophic symbiosis in the giant shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory. Proc Natl Acad Sci U S A 114:E3652-E3658
Lin, Zhenjian; Smith, Misty D; Concepcion, Gisela P et al. (2017) Modulating the Serotonin Receptor Spectrum of Pulicatin Natural Products. J Nat Prod 80:2360-2370
Shipway, J R; O'Connor, R; Stein, D et al. (2016) Zachsia zenkewitschi (Teredinidae), a Rare and Unusual Seagrass Boring Bivalve Revisited and Redescribed. PLoS One 11:e0155269
Barghi, Neda; Concepcion, Gisela P; Olivera, Baldomero M et al. (2015) Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes. Genome Biol Evol 7:1797-814
Barghi, Neda; Concepcion, Gisela P; Olivera, Baldomero M et al. (2015) High conopeptide diversity in Conus tribblei revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms. Mar Biotechnol (NY) 17:81-98
Neves, Jorge L B; Lin, Zhenjian; Imperial, Julita S et al. (2015) Small Molecules in the Cone Snail Arsenal. Org Lett 17:4933-5
Cragg, Simon M; Beckham, Gregg T; Bruce, Neil C et al. (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108-19
Teichert, Russell W; Schmidt, Eric W; Olivera, Baldomero M (2015) Constellation pharmacology: a new paradigm for drug discovery. Annu Rev Pharmacol Toxicol 55:573-89
Puillandre, N; Duda, T F; Meyer, C et al. (2015) One, four or 100 genera? A new classification of the cone snails. J Molluscan Stud 81:1-23

Showing the most recent 10 out of 27 publications