Cancer onset and progression involves disruptions of complex networks of biomolecular interactions in cells, as a result of genomic and epigenomic aberrations. To achieve a deeper understanding of the genetic basis of cancer and to identify novel translational directions requires moving beyond detecting simple associations between genomic aberrations and clinical endpoints. However, little is known about how the states of disease-perturbed regulatory networks are altered by such aberrations, or how aberrations ultimately lead to cellular dysfunction. The goal of the Center for Systems Analysis of the Cancer Regulome is to address this challenge by developing and applying advanced algorithms and model-based approaches to enable the interpretation of TCGA data at the level of regulatory mechanisms; and to use such knowledge for enabling principled and systematic approaches for drug target discovery and therapeutic intervention in a clinically relevant manner. The Center will build three computational pipelines that will carry out integrated analyses of TCGA-derived high-throughput experimental data sets. These pipelines will: 1) identify potential mechanisms of genomic-transcriptomic regulation associated with specific cancers and clinical parameters; 2) infer networks that explain cancer type-specific transcriptional profiles, and identify molecules that may be important control nodes in these networks as a means to prioritize drug targets for therapeutic intervention; and 3) compare cancer-associated features across all cancer types within TCGA to gain insight into the regulatory basis for cancer progression in different cancer types. The results of these pipelines will be rapidly disseminated through TCGA, together with visualization tools that facilitate the exploration and evaluation of each derived regulatory mechanism.

Public Health Relevance

Cancer is a major cause of mortality and morbidity in the United States. Developing new therapies requires a deep understanding of the molecular basis of this complex genetic disease. Our integrated systems-level analysis of cancer onset and progression will map the molecular processes undertying cancer and identify potential novel drug targets for therapeutic intervention.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
3U24CA143835-05S2
Application #
9199254
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Yang, Liming
Project Start
2009-09-28
Project End
2016-09-30
Budget Start
2016-04-01
Budget End
2016-09-30
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Institute for Systems Biology
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98109
Ding, Li; Bailey, Matthew H; Porta-Pardo, Eduard et al. (2018) Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell 173:305-320.e10
Seiler, Michael; Peng, Shouyong; Agrawal, Anant A et al. (2018) Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Rep 23:282-296.e4
Liu, Yang; Sethi, Nilay S; Hinoue, Toshinori et al. (2018) Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell 33:721-735.e8
Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong et al. (2018) Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Rep 23:270-281.e3
Saltz, Joel; Gupta, Rajarsi; Hou, Le et al. (2018) Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Rep 23:181-193.e7
Ellrott, Kyle; Bailey, Matthew H; Saksena, Gordon et al. (2018) Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst 6:271-281.e7
Campbell, Joshua D; Yau, Christina; Bowlby, Reanne et al. (2018) Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Rep 23:194-212.e6
Gao, Qingsong; Liang, Wen-Wei; Foltz, Steven M et al. (2018) Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep 23:227-238.e3
Thorsson, Vésteinn; Gibbs, David L; Brown, Scott D et al. (2018) The Immune Landscape of Cancer. Immunity 48:812-830.e14
Radovich, Milan; Pickering, Curtis R; Felau, Ina et al. (2018) The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 33:244-258.e10

Showing the most recent 10 out of 112 publications