This project is to develop, deploy, and disseminate a suite of open source tools and integrated informatics platform that will facilitate multi-scale, correlative analyses of high resolution whole slide tissue image data, spatially mapped genetics and molecular data for cancer research. This platform will play an essential role in supporting studies of tumor initiation, development, heterogeneity, invasion, and metastasis. These tools will allow quantitative analyses of the interplay between morphology and spatially mapped genetics and molecular data and will be used in studies that predict outcome and response to treatment, in radiogenomic and quantitative radiology imaging studies and in studies to identify cancer targets. The software and methods will enable researchers to assemble and visualize detailed, multi-scale descriptions of tissue morphologic changes originating from a wide range of microscopy instruments and make it possible to efficiently manage, interrogate, and explore microscopy imaging data at multiple scales and to identify and analyze features across individuals and cohorts. The project will build on and extend the software and methods we have developed in microscopy imaging, integrative image analysis, high performance computing, databases, and visualization over the past fifteen years and will also leverage, integrate and adapt the Harvard Slicer platform. The design and implementation of the informatics platform will be driven by four well funded, leading edge cancer focused studies along with many additional collaborative efforts including the Cancer Imaging Archive (TCIA), the Mayo Clinic Quantitative Imaging Network site, the Colon Cancer Family Registry and the Polyp Prevention Study.

Public Health Relevance

Cancer is a disease that involves complex interactions between cancer cells, surrounding and distant tissue. Within a given cancer, cancer cells can differ from one another in many ways and cancer cells can exert a variety of types of influence on other tissue. In order to develop effective diagnostic and treatment methods for cancer, we need to understand these complex patterns of interaction. This project will develop and deploy a suite of informatics tools that will enable researchers to study tumors - their structure, their genetics and protein expression - at microscopic scales. Our tools will be employed by basic cancer researchers who study cancer mechanisms, by researchers who seek to discover new therapies and by researchers who employ quantitative imaging methods to assess results of clinical cancer trials.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
1U24CA180924-01A1
Application #
8786716
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Ossandon, Miguel
Project Start
2014-09-01
Project End
2019-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Miscellaneous
Type
Schools of Medicine
DUNS #
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Konen, J; Summerbell, E; Dwivedi, B et al. (2017) Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat Commun 8:15078
Barreiros Jr, Willian; Teodoro, George; Kurc, Tahsin et al. (2017) Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems. Proc IEEE Int Conf Clust Comput 2017:25-35
Teodoro, George; Kurç, Tahsin M; Taveira, Luís F R et al. (2017) Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines. Bioinformatics 33:1064-1072
Penha, Emanuel Diego S; Iriabho, Egiebade; Dussaq, Alex et al. (2017) Isomorphic semantic mapping of variant call format (VCF2RDF). Bioinformatics 33:547-548
Wilkinson, S; Hou, Y; Zoine, J T et al. (2017) Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity. Sci Rep 7:40929
Teodoro, George; Kurc, Tahsin; Andrade, Guilherme et al. (2017) Application Performance Analysis and Efficient Execution on Systems with multi-core CPUs, GPUs and MICs: A Case Study with Microscopy Image Analysis. Int J High Perform Comput Appl 31:32-51
Louis, David N; Feldman, Michael; Carter, Alexis B et al. (2016) Computational Pathology: A Path Ahead. Arch Pathol Lab Med 140:41-50
Gao, Yi; Ratner, Vadim; Zhu, Liangjia et al. (2016) Hierarchical nucleus segmentation in digital pathology images. Proc SPIE Int Soc Opt Eng 9791:
Gao, Yi; Liu, William; Arjun, Shipra et al. (2016) Multi-scale learning based segmentation of glands in digital colonrectal pathology images. Proc SPIE Int Soc Opt Eng 9791:
Bremer, Erich; Kurc, Tahsin; Gao, Yi et al. (2016) Safe ""cloudification"" of large images through picker APIs. AMIA Annu Symp Proc 2016:342-351

Showing the most recent 10 out of 17 publications