The Animal Health and Welfare Core (AHWC) is responsible for receipt, certification, and husbandry of mice that are sent to Vanderbilt for the purpose of metabolic phenotyping. The AHWC is the interface between the Vanderbilt Division of Animal Care and the VMMPC. The responsibilites and services ofthis core are critical for the VMMPC to perform well-controlled experiments in non-stressed, healthy mice. The overall objective of the core is to facilitate the use of mice in diabetes, obesity and related research, ensure compliance and implement and maintain the health and colony numbers appropriate to the rate of center usage. Specifically the core is responsible for 1) receipt and documentation of incoming mice, 2) assignment and oversight of quarantine procedures, 3) provision of day-to-day husbandry, 4) provision of veterinary care and support, 5) performance of pathological assessments, and 6) implementation and maintenance of any specific dietary requirements.

Public Health Relevance

The quality of data obtained from mouse phenotyping is determined in large part by the health ofthe mouse. This core is critical to ensure mice are healthy so that our experiments are accurate and reproducible.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK059637-14
Application #
8708033
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
14
Fiscal Year
2014
Total Cost
$18,547
Indirect Cost
$6,658
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Babaev, Vladimir R; Huang, Jiansheng; Ding, Lei et al. (2018) Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 9:215
Fensterheim, Benjamin A; Young, Jamey D; Luan, Liming et al. (2018) The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism. J Immunol 200:3777-3789
Harris, Nicholas A; Isaac, Austin T; Günther, Anne et al. (2018) Dorsal BNST ?2A-Adrenergic Receptors Produce HCN-Dependent Excitatory Actions That Initiate Anxiogenic Behaviors. J Neurosci 38:8922-8942
Mani, Bharath K; Castorena, Carlos M; Osborne-Lawrence, Sherri et al. (2018) Ghrelin mediates exercise endurance and the feeding response post-exercise. Mol Metab 9:114-130
Ehrlicher, Sarah E; Stierwalt, Harrison D; Newsom, Sean A et al. (2018) Skeletal muscle autophagy remains responsive to hyperinsulinemia and hyperglycemia at higher plasma insulin concentrations in insulin-resistant mice. Physiol Rep 6:e13810
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95
Vierra, Nicholas C; Dickerson, Matthew T; Jordan, Kelli L et al. (2018) TALK-1 reduces delta-cell endoplasmic reticulum and cytoplasmic calcium levels limiting somatostatin secretion. Mol Metab 9:84-97
West, Kathryn L; Kelm, Nathaniel D; Carson, Robert P et al. (2018) Myelin volume fraction imaging with MRI. Neuroimage 182:511-521
Rossi, Mario; Zhu, Lu; McMillin, Sara M et al. (2018) Hepatic Gi signaling regulates whole-body glucose homeostasis. J Clin Invest 128:746-759

Showing the most recent 10 out of 661 publications