The Animal Models of Diabetic Complications Consortium (AMDCC) and the Mouse Metabolic Phenotyping Centers (MMPC) are two multi-center initiatives funded by the NIH. During the current five year funding cycle, the AMDCC had the primary responsibility of developing and characterizing animal models that mimic human diabetic complications. The mission of the AMDCC was to not only create these models, but also provide these models, the data relevant to their characterization and the protocols used for their generation and analysis to the scientific community. Oversight of the consortium comes from both the NIH and an External Advisory Board (EAB). During this third funding cycle, the AMDCC will be rebranded as the Diabetic Complications Consortium (DCC) and will be responsible for continuing support for the DCC animal model phenotyping through the use of opportunity pools (funding), manage/maintain the website and phenotyping data and administratively organize the meetings and workshops sponsored by the DCC to engage the greater diabetic complications scientific community. In contrast, the MMPCs are charged with providing the scientific community with standardized, high quality metabolic and physiologic phenotyping services for the mouse. The MMPC provides state-of-the-art technologies to investigators for a fee, with their services including characterization of mouse metabolism, blood composition (including hormones), energy balance, eating and exercise, organ function and morphology, physiology and histology. Over the last four years the two consortia have been managed by one CBU because of the NIH decision to integrate the activities of the two consortia during their second funding cycles. Our laboratory has been the CBU for both the AMDCC (last 9 years) and the MMPC (last 4 years). The CBU is responsible for creating and maintaining the administrative, scientific and informatics infrastructure necessary to organize and facilitate their operations. The goal of this proposal is to provide that infrastructure. We will build upon the success of the current AMDCC/MMPC CBU infrastructure to provide both the DCC and MMPC with a robust and comprehensive service oriented solution that supports both the common and unique aspects of each.

Public Health Relevance

This application will provide the administrative and informatics infrastructure for the Diabetic Complications Consortium and Mouse Metabolic Phenotyping Centers.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (M2))
Program Officer
Abraham, Kristin M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Georgia Regents University
Schools of Medicine
United States
Zip Code
Behr, Stefan; Kristoficova, Ivica; Witting, Michael et al. (2017) Identification of a High-Affinity Pyruvate Receptor in Escherichia coli. Sci Rep 7:1388
Kobayashi, Hanako; Liu, Jiao; Urrutia, Andres A et al. (2017) Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development. Kidney Int 92:1370-1383
Maddaloni, Ernesto; D'Eon, Stephanie; Hastings, Stephanie et al. (2017) Bone health in subjects with type 1 diabetes for more than 50 years. Acta Diabetol 54:479-488
McGavigan, Anne K; Garibay, Darline; Henseler, Zachariah M et al. (2017) TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 66:226-234
Liu, Xiaoning; Edinger, Robert S; Klemens, Christine A et al. (2017) A MicroRNA Cluster miR-23-24-27 Is Upregulated by Aldosterone in the Distal Kidney Nephron Where it Alters Sodium Transport. J Cell Physiol 232:1306-1317
Eberly, Allison R; Floyd, Kyle A; Beebout, Connor J et al. (2017) Biofilm Formation by Uropathogenic Escherichia coli Is Favored under Oxygen Conditions That Mimic the Bladder Environment. Int J Mol Sci 18:
Maddaloni, Ernesto; Xia, Yu; Park, Kyoungmin et al. (2017) High density lipoprotein modulates osteocalcin expression in circulating monocytes: a potential protective mechanism for cardiovascular disease in type 1 diabetes. Cardiovasc Diabetol 16:116
Calcutt, Nigel A; Smith, Darrell R; Frizzi, Katie et al. (2017) Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J Clin Invest 127:608-622
Pal, Sarit; Meininger, Cynthia J; Gashev, Anatoliy A (2017) Aged Lymphatic Vessels and Mast Cells in Perilymphatic Tissues. Int J Mol Sci 18:
Hayashi, Sakiko; Oe, Yuji; Fushima, Tomofumi et al. (2017) Protease-activated receptor 2 exacerbates adenine-induced renal tubulointerstitial injury in mice. Biochem Biophys Res Commun 483:547-552

Showing the most recent 10 out of 160 publications