Core B: Animal The AAALAC-accredited Case Animal Research Center (ARC) provides outstanding and state of the art housing and care of animals (including fragile transgenic and knockout mice). To insure that the Animal Care Core is also managed under the general standards of the Case ARC, Dr John Durfee, Director of the ARC, is also the Director of the Animal Care Core. The mice investigated by the MMPC and housed within the ARC during quarantine and conditioning prior to testing. The MMPC Animal Care Core Director ensures that animals are cared for under the uniform standards of the MMPC network. This includes (i) the quarantine conditions upon arrival of the mice at the ARC, and re-quarantine of some mice after imaging or metabolic procedures outside of the main ARC, (ii) the testing for parasites and infectious agents (see below), and (iii) the feeding of mice the special Teklad diet or semi-synthetic diets. The management of multiple groups of mice, each under its own IACUC protocol, but all under the MMPC umbrella, requires special record keeping procedures to make sure that each user is correctly billed for, but only for, the housing and care of her/his mice.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK076174-03
Application #
8517686
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$46,623
Indirect Cost
$16,927
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Mera, Paula; Laue, Kathrin; Ferron, Mathieu et al. (2016) Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab 23:1078-92
Roychowdhury, Sanjoy; McCullough, Rebecca L; Sanz-Garcia, Carlos et al. (2016) Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology 64:1518-1533
Li, Lei; Che, Li; Wang, Chunmei et al. (2016) [(11)C]acetate PET Imaging is not Always Associated with Increased Lipogenesis in Hepatocellular Carcinoma in Mice. Mol Imaging Biol 18:360-7
Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume et al. (2016) Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism. J Lipid Res 57:1684-95
Majumder, Mithu; Mitchell, Daniel; Merkulov, Sergei et al. (2015) Residues required for phosphorylation of translation initiation factor eIF2α under diverse stress conditions are divergent between yeast and human. Int J Biochem Cell Biol 59:135-41
Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O et al. (2015) Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice. Diabetes 64:3093-103
Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac et al. (2015) Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain. J Neurochem 132:301-12
Li, Qingling; Deng, Shuang; Ibarra, Rafael A et al. (2015) Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. J Biol Chem 290:8121-32
DeSantis, David A; Ko, Chih-Wei; Wang, Lan et al. (2015) Constitutive Activation of the Nlrc4 Inflammasome Prevents Hepatic Fibrosis and Promotes Hepatic Regeneration after Partial Hepatectomy. Mediators Inflamm 2015:909827
Frederick, David W; Davis, James G; Dávila Jr, Antonio et al. (2015) Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem 290:1546-58

Showing the most recent 10 out of 37 publications