The proposed Michigan Regional Comprehensive Metabolomics Resource Core (MRCMRC or MRC2) is a fully integrated program that will provide researchers nation-wide with the expertise and infrastructure to determine the levels of known and unknown metabolites in cells, tissues and biological fluids. In addition, the MRC will provide opportunities for training in the technology of metabolomic analysis, statistical analysis and bioinformatic evaluation of metabolite data as well as approaches to Incorporation of metabolomics into basic, preclinical, translational and clinical research. Incorporated into this service component will be a robust research component directed towards improving the breadth of metabolite detection, the quality and efficiency of metabolomic analysis and importantly, tools to turn spectral data into knowledge to for the researcher The MRC2 will contain an Administrative Core to oversee and integrate operations;an Analytical Core to help design experiments for directed quantitative measure of metabolites or high-throughput evaluation of large numbers of known and unknown metabolites;a Data and Information Technology Core which will perform primary data processing or re-mining of archival data and will serve as a data repository;a Statistics and Bioinformatics Core which will assist researchers in the statistical evaluation of metabolomic data and integration with other 'omics or phenotypic data;and a Promotion and Outreach Core which will organize and provide seminars, symposia, workshops and web-based videos to increase the lay and research communities knowledge and use of metabolomic data.

Public Health Relevance

The RCMRC grant is directed towards providing increasing the technology to measure small molecules (metabolites) found in the body. These metabolites are the building blocks of all cells and participate in all body processes. By providing researchers with ways to measure the metabolites accurately from cells and tissues and in the blood, new insights into the ways In which changes in metabolism can contribute to diseases, such as diabetes and caner will be found. With this knowledge, new ways to prevent and treat a variety of diseases may be possible.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
3U24DK097153-02S1
Application #
8827894
Study Section
Special Emphasis Panel (ZRG1-BST-J (50))
Program Officer
Maruvada, Padma
Project Start
2012-09-04
Project End
2017-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2014
Total Cost
$392,918
Indirect Cost
$66,141
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Wernisch, Stefanie; Pennathur, Subramaniam (2016) Evaluation of coverage, retention patterns, and selectivity of seven liquid chromatographic methods for metabolomics. Anal Bioanal Chem 408:6079-91
Demehri, Farokh R; Frykman, Philip K; Cheng, Zhi et al. (2016) Altered fecal short chain fatty acid composition in children with a history of Hirschsprung-associated enterocolitis. J Pediatr Surg 51:81-6
Nadeem Aslam, Muhammad; Bassis, Christine M; Zhang, Li et al. (2016) Calcium Reduces Liver Injury in Mice on a High-Fat Diet: Alterations in Microbial and Bile Acid Profiles. PLoS One 11:e0166178
Giorgetti, Elisa; Yu, Zhigang; Chua, Jason P et al. (2016) Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing. Cell Rep 17:125-36
Moore, Stephanie; Hess, Stephanie; Jorgenson, James (2016) Characterization of an immobilized enzyme reactor for on-line protein digestion. J Chromatogr A 1476:1-8
Ma, Siming; Upneja, Akhil; Galecki, Andrzej et al. (2016) Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. Elife 5:
Wynn, Michelle L; Yates, Joel A; Evans, Charles R et al. (2016) RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells. J Biol Chem 291:13715-29
Kochen, Michael A; Chambers, Matthew C; Holman, Jay D et al. (2016) Greazy: Open-Source Software for Automated Phospholipid Tandem Mass Spectrometry Identification. Anal Chem 88:5733-41
Theriot, Casey M; Bowman, Alison A; Young, Vincent B (2016) Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. mSphere 1:
Obi, Andrea T; Stringer, Kathleen A; Diaz, Jose A et al. (2016) 1D-¹H-nuclear magnetic resonance metabolomics reveals age-related changes in metabolites associated with experimental venous thrombosis. J Vasc Surg Venous Lymphat Disord 4:221-30

Showing the most recent 10 out of 97 publications