The long-term mission of the Mayo Clinic Comprehensive Metabolomics Research Core (MCCMRC) is to facilitate access to metabolomic techniques for use in both basic and disease-oriented research while continuously developing novel methodologies designed to better understand the metabolic derangements present in disease. The Core will also enhance awareness of and education on the potential application of metabolomics tools in research. The administrative core of MCCMRC is intended to help create and foster such an interactive and productive environment and will take advantage of Mayo's unique strengths and track record in metabolic research including an established Metabolomics Core and multiple investigators with extramural funding for research programs based on metabolomic techniques. The Core is strengthened by integration of the NMRS facility to the Metabolomics Core enhancing the availability of advanced mass spectrometry techniques. The MCCMRC's global efforts will be enhanced by substantial institutional resources including a Center for Translational Science Activities (CTSA) grant and complementary institutional cores. Ultimately, the MCCMRC will enhance and expand the collaborative intersections and critical mass of scientists utilizing metabolomic techniques in disease-oriented research. The administrative core will be the link between the Metabolomics Core, Mayo Clinic Leadership and National Consortium leadership. The administrative core will help to achieve the goals of the MCCMRC by coordinating the goals set by the program director in consultation with the internal and external advisory committees. Moreover, the administrative core will oversee the hiring and training of additional staff, installation of additional equipment, establishing techniques and quality control measures. It will facilitate the activities of the Promotion and Outreach core which will include developing course work for new investigators and a Request For Applications for pilot and feasibility projects. It is anticipated that the new services will be available in years 2-3. Years 4-5 will be focused on outreach efforts to expand the investigator pool. By the end of the 5 year period we will transition to a self-sustaining model through the implementation of a fee-for-service cost recovery model. This process will be guided and supported through the administrative infrastructure in place to support core billing and compliance. In addition, the administrative core will oversee and prioritize requests for resource sharing both intramurally and extramurally.

Public Health Relevance

This proposal is prepared in response to RFA-RM-11-016: Regional Comprehensive Metabolomics Resource Cores (RCMRC) (U24). The administrative core will oversee this initiative and facilitate the transition to a self-sustaining model for funding ensuring the long term success of the Mayo Clinic Comprehensive Metabolomics Research Core (MCCMRC) and its stated goals.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Hinton, David J; Vázquez, Marely Santiago; Geske, Jennifer R et al. (2017) Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects. Sci Rep 7:2496
Talbert, Erin E; Yang, Jennifer; Mace, Thomas A et al. (2017) Dual Inhibition of MEK and PI3K/Akt Rescues Cancer Cachexia through both Tumor-Extrinsic and -Intrinsic Activities. Mol Cancer Ther 16:344-356
Zhang, Yuwen; Rao, Enyu; Zeng, Jun et al. (2017) Adipose Fatty Acid Binding Protein Promotes Saturated Fatty Acid-Induced Macrophage Cell Death through Enhancing Ceramide Production. J Immunol 198:798-807
Robinson, Matthew M; Dasari, Surendra; Konopka, Adam R et al. (2017) Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab 25:581-592
Kazak, Lawrence; Chouchani, Edward T; Lu, Gina Z et al. (2017) Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metab 26:660-671.e3
Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D et al. (2017) Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome. Metabolism 71:52-63
Lalia, Antigoni Z; Dasari, Surendra; Robinson, Matthew M et al. (2017) Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging (Albany NY) 9:1096-1129
Hames, Kazanna C; Morgan-Bathke, Maria; Harteneck, Debra A et al. (2017) Very-long-chain ?-3 fatty acid supplements and adipose tissue functions: a randomized controlled trial. Am J Clin Nutr 105:1552-1558
Hinshaw, Ling; Schiavon, Michele; Dadlani, Vikash et al. (2016) Effect of Pramlintide on Postprandial Glucose Fluxes in Type 1 Diabetes. J Clin Endocrinol Metab 101:1954-62
Vella, Adrian; Jensen, Michael D; Nair, K Sreekumaran (2016) Eulogy for the Metabolic Clinical Investigator? Diabetes 65:2821-3

Showing the most recent 10 out of 77 publications