As an integral part of Mayo Clinic Comprehensive Metabolomics Resource Core (MCCMRC) the NMR Metabolomics core provides targeted analysis of metabolomic profiles using Nuclear Magnetic Resonance (NMR) Spectroscopy. In addition to establishing standard NMR high-throughput 1H and 31P NMR metabolomics analyses, the core will implement, its unique methods of 18O labeling and 18O-assisted 31P NMR spectroscopy for studies of phosphometabolite dynamics and 13C NMR for carbon isotopomer exchange in metabolic networks, a procedure that is integrated in Mass Spectrometry core. This integrated approach of qualitative and quantitative analysis of tissue extracts (1H and 31P NMR), stable isotope tracing (13C and 18O-assisted 31P NMR spectroscopy) and in vivo spectroscopy (1H, 31P volume selective NMR spectroscopy, NMR spectroscopic imaging) will include the analysis of human and animal samples (e.g., whole blood, plasma, cerebrospinal fluid, urine, heart, liver, brain, kidney) and in vivo intact organs (brain, heart, kidney, muscle). In addition, we will implement protocols for stress metabolomic testing before and after exercise. The NMR Metabolomics core is supported by Analytical NMR Facility that has 5 state-of-theart 300 MHz, 500 MHz, 600 MHz, 700 MHz and wide bore 700 MHz NMR spectrometers and is staffed with experienced NMR spectroscopists. We propose the acquisition of a high sensitivity 600 MHz BB cryoprobe, high-throughput sample handler and additional technical staff to expand the core capacity and analytical capabilities at least threefold for 1H and 4-9 fold for 31P and 13C NMR (from -25 to 100 samples/day) and to offer services and to a larger number of investigators inside and outside Mayo Clinic. The core will implement standardized metabolomic protocols and methods of NMR data acquisition, processing, metabolite identification, bioinformatic pathway and flux analysis and interpretation. The core will develop appropriate workflow that will ensure cost-effective analysis of series of samples, and quality control. The core staff will work with the MCCMRC Management to implement consistent formats to deposit raw, processed and analyzed data according to the data sharing plan. The NMR Metabolomic core currently assists over 20 NIH supported investigators in cardiovascular, aging, diabetes, cancer and neurodegenerative disease, and regenerative and individualized medicine areas. We plan to make the program self-sustaining in five years. Thus the overall goal of this application is to consolidate and expand the NMR Metabolomic core facility and services it provides and to offer our expertise to other national institutions serving as a regional hub to advance stable isotope and NMR based translational and clinical metabolomics.

Public Health Relevance

This proposal will implement NMR-based metabolomic and advanced stable isotope-based NMR technology enabling the monitoring of metabolite levels and turnover rates in tissue, whole fresh blood, plasma, and other body fluid samples. The facility will allow high-throughput screening of a large number of metabolomic biomarkers for various human diseases to improve disease diagnosis, prognosis, metabolic monitoring, and drug development. This will translate to advanced new treatment strategies for human diseases within specialized centers at Mayo Clinic and nationwide.

Agency
National Institute of Health (NIH)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK100469-02
Application #
8731888
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
City
Rochester
State
MN
Country
United States
Zip Code
55905
Zabielski, Piotr; Lanza, Ian R; Gopala, Srinivas et al. (2016) Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice. Diabetes 65:561-73
Kakazu, Eiji; Mauer, Amy S; Yin, Meng et al. (2016) Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J Lipid Res 57:233-45
Basu, Ananda; Veettil, Sona; Dyer, Roy et al. (2016) Direct Evidence of Acetaminophen Interference with Subcutaneous Glucose Sensing in Humans: A Pilot Study. Diabetes Technol Ther 18 Suppl 2:S243-7
Hinshaw, Ling; Schiavon, Michele; Dadlani, Vikash et al. (2016) Effect of Pramlintide on Postprandial Glucose Fluxes in Type 1 Diabetes. J Clin Endocrinol Metab 101:1954-62
Irving, Brian A; Wood, G Craig; Bennotti, Peter N et al. (2016) Nutrient Transporter Expression in the Jejunum in Relation to Body Mass Index in Patients Undergoing Bariatric Surgery. Nutrients 8:
Vella, Adrian; Jensen, Michael D; Nair, K Sreekumaran (2016) Eulogy for the Metabolic Clinical Investigator? Diabetes 65:2821-3
Kline, Timothy L; Irazabal, Maria V; Ebrahimi, Behzad et al. (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75:1466-73
O'Neill, Brian T; Lee, Kevin Y; Klaus, Katherine et al. (2016) Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest 126:3433-46
Johnson, Matthew L; Distelmaier, Klaus; Lanza, Ian R et al. (2016) Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. Diabetes 65:74-84
Savica, Rodolfo; Murray, Melissa E; Persson, Xuan-Mai et al. (2016) Plasma sphingolipid changes with autopsy-confirmed Lewy Body or Alzheimer's pathology. Alzheimers Dement (Amst) 3:43-50

Showing the most recent 10 out of 62 publications