The goal of the promotion and outreach core is to facilitate an array of research collaborations, workshops, and other educational activities, along with visiting scientist opportunities as outlined in the RFA. We will develop a curricula targeted specifically at research fellows and junior faculty that interdigitates with existing training programs, including T32 training grants and institutional K Award programs. This will permit us to build a pipeline of future metabolomic investigators. A pilot feasibility program will be developed that will also leverage other NIH and institutional resources. To achieve our overall goals we will adopt a biphasic strategy. During the first two years our focus will be on developing and providing outstanding educational opportunities by working with internal experts and external collaborators with the needed skills. During the first year, while metabolomics infrastructure is being expanded to accommodate additional demand, we will establish the Pilot &Feasibility program. This will set the stage for expanded promotion and outreach activities during the next three years of the award. To meet our overall goal Aim 1 leverages existing relationships with other institutions to facilitate research collaborations, a visiting scientist program, workshops, and short-term courses and training to the broad scientific community at these locations. Planning will occur for expansion of the RCMRC activities beyond these institutions during the first two years with roll out in years 3 and beyond.
In Aim 2 we will work with leaders of the institutional training (T32) and career development (K) awards to develop a curricula and hands-on training program to strengthen metabolomics training at the participating institutions. This will build a pipeline of future metabolomics investigators. During the second half of the funding cycle we will develop specific individual K applications directed toward career development and metabolomics and a metabolomics T32 institutional training grant if there is sufficient interest/demand.
Aim 3 will provide pilot/feasibility funding for focused projects in a timely manner, allowing investigators to pursue novel, innovative research directions.
The aims outlined above are designed to meet the overall goals of RCMRC program. They are also designed to maximally leverage ongoing collaborations, training activities, and pilot feasibility resources. Importantly, they are modeled on a number of successful approaches the PI and his team have used over the years to facilitate scientific collaboration and grow new fields of research.

Public Health Relevance

The Promotion and Outreach Core outlines a series of educational activities and collaborations designed to develop the next generation of metabolomics investigators and generally grow this field of research. It includes educational activities and partnerships with other institutions and leverages ongoing inter-institutional collaborations. It is also supported by a strong pilot and feasibility program that will permit investigators new to metabolomics to generate preliminary data critical for extramural support.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Hinton, David J; Vázquez, Marely Santiago; Geske, Jennifer R et al. (2017) Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects. Sci Rep 7:2496
Talbert, Erin E; Yang, Jennifer; Mace, Thomas A et al. (2017) Dual Inhibition of MEK and PI3K/Akt Rescues Cancer Cachexia through both Tumor-Extrinsic and -Intrinsic Activities. Mol Cancer Ther 16:344-356
Zhang, Yuwen; Rao, Enyu; Zeng, Jun et al. (2017) Adipose Fatty Acid Binding Protein Promotes Saturated Fatty Acid-Induced Macrophage Cell Death through Enhancing Ceramide Production. J Immunol 198:798-807
Robinson, Matthew M; Dasari, Surendra; Konopka, Adam R et al. (2017) Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab 25:581-592
Kazak, Lawrence; Chouchani, Edward T; Lu, Gina Z et al. (2017) Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metab 26:660-671.e3
Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D et al. (2017) Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome. Metabolism 71:52-63
Lalia, Antigoni Z; Dasari, Surendra; Robinson, Matthew M et al. (2017) Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging (Albany NY) 9:1096-1129
Hames, Kazanna C; Morgan-Bathke, Maria; Harteneck, Debra A et al. (2017) Very-long-chain ?-3 fatty acid supplements and adipose tissue functions: a randomized controlled trial. Am J Clin Nutr 105:1552-1558
Hinshaw, Ling; Schiavon, Michele; Dadlani, Vikash et al. (2016) Effect of Pramlintide on Postprandial Glucose Fluxes in Type 1 Diabetes. J Clin Endocrinol Metab 101:1954-62
Vella, Adrian; Jensen, Michael D; Nair, K Sreekumaran (2016) Eulogy for the Metabolic Clinical Investigator? Diabetes 65:2821-3

Showing the most recent 10 out of 77 publications