The specific aim of this proposal is to continue the mission of the UC Davis/NIH NeuroMab Facility: to develop a comprehensive library of monoclonal antibodies (mAbs) optimized for use in the brain (i.e. NeuroMabs). This renewal remains driven by the need, articulated in the original proposal to create the UC Davis/NIH NeuroMab Facility, and that still remains, to greatly expand the availability of such brain-optimized mAbs for use in basic, translational and clinical neuroscience research. There remains a need for high- quality antibodies against defined gene products that serve as the crucial bridge between the inventory of genes expressed in the brain, and understanding how their products determine brain function in normal and pathological conditions. However, many necessary reagents remain either unavailable, or when available suffer from a lack of efficacy and specificity, especially when used in mammalian brain preparations. The availability of high-quality, reliable mAbs that have been optimized for use in mammalian brain (i.e. NeuroMabs) is of utmost importance to virtually all areas of neuroscience. We will continue to pursue the generation of a comprehensive library of NeuroMabs by using recombinant and/or synthetic immunogens corresponding to fragments of neuronal proteins in an intense immunization protocol that yields large numbers of IgG-secreting hybridomas from a relatively short immunization period. These large hybridoma pools will be screened for those mAbs that recognize the cognate antigen in heterologous cells, and then the entire positive pool subjected to comprehensive biochemical and immunohistochemical analyses of their efficacy and specificity in brain. The resultant brain-optimized NeuroMabs will continue to be made available at very low cost to the research community as tissue culture supernatants or as purifed IgG preparations. Investigators will continue to use these NeuroMabs for determining the presence and relative abundance of the cognate antigens in developing, adult, aged, and diseased brain, their cellular and subcellular localization, functionally relevant post-translational modifications, and protein-protein interactions. Moreover, NeuroMabs will continue to find additional applications in direct functional analyses of proteins, in diagnostic procedures, and as therapeutics.

Public Health Relevance

The availability of high-quality, reliable mAbs that have been optimized for use in mammalian brain is of utmost importance to virtually all areas of basic, translational and clinical neuroscience.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24NS050606-08
Application #
8309372
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Stewart, Randall R
Project Start
2004-12-01
Project End
2015-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
8
Fiscal Year
2012
Total Cost
$1,396,772
Indirect Cost
$489,777
Name
University of California Davis
Department
Physiology
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Hurt, Carl M; Bjork, Susann; Ho, Vincent K et al. (2014) REEP1 and REEP2 proteins are preferentially expressed in neuronal and neuronal-like exocytotic tissues. Brain Res 1545:12-22
Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason et al. (2014) Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J Neurosci 34:3719-32
Sherwood, Amanda R; Johnson, Mary Beth; Delgado-Escueta, Antonio V et al. (2013) A bioassay for Lafora disease and laforin glucan phosphatase activity. Clin Biochem 46:1869-76
Martinez-Hernandez, Jose; Ballesteros-Merino, Carmen; Fernandez-Alacid, Laura et al. (2013) Polarised localisation of the voltage-gated sodium channel Na(v)1.2 in cerebellar granule cells. Cerebellum 12:16-26
Sherry, David M; Blackburn, Bradley A (2013) P-Rex2, a Rac-guanine nucleotide exchange factor, is expressed selectively in ribbon synaptic terminals of the mouse retina. BMC Neurosci 14:70
Xiao, Maolei; Bosch, Marie K; Nerbonne, Jeanne M et al. (2013) FGF14 localization and organization of the axon initial segment. Mol Cell Neurosci 56:393-403
Laedermann, Cedric J; Cachemaille, Matthieu; Kirschmann, Guylene et al. (2013) Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain. J Clin Invest 123:3002-13
Benoist, Marion; Palenzuela, Rocio; Rozas, Carlos et al. (2013) MAP1B-dependent Rac activation is required for AMPA receptor endocytosis during long-term depression. EMBO J 32:2287-99
Zhou, Meng-Hua; Yang, Guang; Jiao, Song et al. (2012) Cholesterol enhances neuron susceptibility to apoptotic stimuli via cAMP/PKA/CREB-dependent up-regulation of Kv2.1. J Neurochem 120:502-14
Krzystanek, Katarzyna; Rasmussen, Hanne Borger; Grunnet, Morten et al. (2012) Deubiquitylating enzyme USP2 counteracts Nedd4-2-mediated downregulation of KCNQ1 potassium channels. Heart Rhythm 9:440-8

Showing the most recent 10 out of 50 publications