The specific aim of this proposal is to continue the mission of the UC Davis/NIH NeuroMab Facility: to develop a comprehensive library of monoclonal antibodies (mAbs) optimized for use in the brain (i.e. NeuroMabs). This renewal remains driven by the need, articulated in the original proposal to create the UC Davis/NIH NeuroMab Facility, and that still remains, to greatly expand the availability of such brain-optimized mAbs for use in basic, translational and clinical neuroscience research. There remains a need for high- quality antibodies against defined gene products that serve as the crucial bridge between the inventory of genes expressed in the brain, and understanding how their products determine brain function in normal and pathological conditions. However, many necessary reagents remain either unavailable, or when available suffer from a lack of efficacy and specificity, especially when used in mammalian brain preparations. The availability of high-quality, reliable mAbs that have been optimized for use in mammalian brain (i.e. NeuroMabs) is of utmost importance to virtually all areas of neuroscience. We will continue to pursue the generation of a comprehensive library of NeuroMabs by using recombinant and/or synthetic immunogens corresponding to fragments of neuronal proteins in an intense immunization protocol that yields large numbers of IgG-secreting hybridomas from a relatively short immunization period. These large hybridoma pools will be screened for those mAbs that recognize the cognate antigen in heterologous cells, and then the entire positive pool subjected to comprehensive biochemical and immunohistochemical analyses of their efficacy and specificity in brain. The resultant brain-optimized NeuroMabs will continue to be made available at very low cost to the research community as tissue culture supernatants or as purifed IgG preparations. Investigators will continue to use these NeuroMabs for determining the presence and relative abundance of the cognate antigens in developing, adult, aged, and diseased brain, their cellular and subcellular localization, functionally relevant post-translational modifications, and protein-protein interactions. Moreover, NeuroMabs will continue to find additional applications in direct functional analyses of proteins, in diagnostic procedures, and as therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24NS050606-09
Application #
8507280
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Stewart, Randall R
Project Start
2004-12-01
Project End
2015-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$1,345,791
Indirect Cost
$471,901
Name
University of California Davis
Department
Physiology
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Frost, Bess; Bardai, Farah H; Feany, Mel B (2016) Lamin Dysfunction Mediates Neurodegeneration in Tauopathies. Curr Biol 26:129-36
Liu, Rui; Yang, Guang; Zhou, Meng-Hua et al. (2016) Flotillin-1 downregulates K(+) current by directly coupling with Kv2.1 subunit. Protein Cell 7:455-60
Park, Joongkyu; Chávez, Andrés E; Mineur, Yann S et al. (2016) CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory. Neuron 92:75-83
Gong, Belvin; Murray, Karl D; Trimmer, James S (2016) Developing high-quality mouse monoclonal antibodies for neuroscience research - approaches, perspectives and opportunities. N Biotechnol 33:551-64
Dover, Katarzyna; Marra, Christopher; Solinas, Sergio et al. (2016) FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon. Nat Commun 7:12895
Trimmer, James S (2015) Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron 85:238-56
Martinez-Espinosa, Pedro L; Wu, Jianping; Yang, Chengtao et al. (2015) Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons. Elife 4:
Bosch, Marie K; Carrasquillo, Yarimar; Ransdell, Joseph L et al. (2015) Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. J Neurosci 35:6752-69
DiFranco, Marino; Yu, Carl; Quiñonez, Marbella et al. (2015) Inward rectifier potassium currents in mammalian skeletal muscle fibres. J Physiol 593:1213-38
Venkatesan, Kumar; Liu, Yue; Goldfarb, Mitchell (2014) Fast-onset long-term open-state block of sodium channels by A-type FHFs mediates classical spike accommodation in hippocampal pyramidal neurons. J Neurosci 34:16126-39

Showing the most recent 10 out of 72 publications