Transcription factors (TFs) are proteins that contain site-specific DNA binding domains and regulate gene expression during development. The complete set of TFs are known for C. elegans and D. melanogaster and with their small genome sizes and well studied embryonic development, it is possible to determine their in vivo binding profiles and function. The modENCODE and modERN projects have generated ChIP-seq binding profiles for a substantial number of TFs. Our output has dramatically increased during modERN through the use of transgenic organisms expressing tagged-TFs. This approach has proven to be more practical than developing TF-specific antibodies, and has been adopted by other projects such as ENCODE. These transgenic lines constitute a valuable resource to the fly and worm communities.
We aim to continue our production of GFP-tagged TFs, producing lines for the remaining 340 TFs in worm and 260 in flies. Furthermore, we will continue to use these new lines along with recently generated lines to generate ChIP-seq data, generating binding profiles for all expressed TFs in both organisms, ~400 in each. During the modERN project we created a pipeline to knockdown TF expression using RNAi and identified the genes that showed differential expression using RNA-seq. While we have had success knocking-down TFs with RNAi in Drosophila, in C. elegans we have utilized homozygous viable deletion strains. In both, we assay expression in embryos before the onset of TF expression, at the peak of expression, and two hours post peak or at terminal differentiation. Using these two approaches, we will continue to generate RNA-seq data on TF loss-of-function lines, focusing on TFs with orthologs in humans or between fly and worm.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Biotechnology Resource Cooperative Agreements (U41)
Project #
2U41HG007355-05
Application #
9416811
Study Section
Special Emphasis Panel (ZHG1)
Project Start
Project End
Budget Start
2018-06-01
Budget End
2019-03-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kudron, Michelle M; Victorsen, Alec; Gevirtzman, Louis et al. (2018) The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors. Genetics 208:937-949
Cao, Junyue; Packer, Jonathan S; Ramani, Vijay et al. (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661-667
Sin, Olga; de Jong, Tristan; Mata-Cabana, Alejandro et al. (2017) Identification of an RNA Polymerase III Regulator Linked to Disease-Associated Protein Aggregation. Mol Cell 65:1096-1108.e6
Weicksel, Steven E; Mahadav, Assaf; Moyle, Mark et al. (2016) A novel small molecule that disrupts a key event during the oocyte-to-embryo transition in C. elegans. Development 143:3540-3548
Thompson, Owen A; Snoek, L Basten; Nijveen, Harm et al. (2015) Remarkably Divergent Regions Punctuate the Genome Assembly of the Caenorhabditis elegans Hawaiian Strain CB4856. Genetics 200:975-89
Cheng, Chao; Andrews, Erik; Yan, Koon-Kiu et al. (2015) An approach for determining and measuring network hierarchy applied to comparing the phosphorylome and the regulome. Genome Biol 16:63
Wang, Daifeng; Yan, Koon-Kiu; Sisu, Cristina et al. (2015) Loregic: a method to characterize the cooperative logic of regulatory factors. PLoS Comput Biol 11:e1004132
Kasper, Dionna M; Wang, Guilin; Gardner, Kathryn E et al. (2014) The C. elegans SNAPc component SNPC-4 coats piRNA domains and is globally required for piRNA abundance. Dev Cell 31:145-58
Gerstein, Mark B; Rozowsky, Joel; Yan, Koon-Kiu et al. (2014) Comparative analysis of the transcriptome across distant species. Nature 512:445-8