The overall objective of this core is to generate, breed, genotype and provide genetically modified mice to investigators of the NWRCE. The unique resources developed and managed by this core and the increased needs and anticipated utilization of these resources motivated the creation of a separate transgenic mouse core for this competitive renewal.
The Specific Aims of this core are:
Aim 1) Advise investigators of the RCE on appropriate use of mouse models for their studies.
Aim 2) Breeding, husbandry, and genotyping of existing mutant mouse lines and generation of new compound genetic mutants through intercrossing and genotyping of existing mutant mouse lines.
Aim 3) Generation of new genetically modified mice.
Aim 4) Rapid generation of congenic mice from mice on mixed genetic backgrounds using a 'speed congenics'approach.

Public Health Relevance

Mice - particularly genetically modified mice - are a crucial resource by which to study the pathogenesis of infectious diseases, including those caused by the Gram-negative bacterial pathogens that are the focus of this RCE. Mouse models also allow us to evaluate the effects of therapeutic or prophylactic interventions. Moreover, through the creation of 'humanized mice'and mice harboring common variations of human genes that may affect their response to such infections or interventions, it is possible to refine these models to better emulate humans.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
United States
Zip Code
West, T Eoin; Myers, Nicolle D; Chantratita, Narisara et al. (2014) NLRC4 and TLR5 each contribute to host defense in respiratory melioidosis. PLoS Negl Trop Dis 8:e3178
Hagar, Jon A; Miao, Edward A (2014) Detection of cytosolic bacteria by inflammatory caspases. Curr Opin Microbiol 17:61-6
Majerczyk, Charlotte D; Brittnacher, Mitchell J; Jacobs, Michael A et al. (2014) Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons. J Bacteriol 196:3862-71
Loomis, Wendy P; Johnson, Matthew L; Brasfield, Alicia et al. (2014) Temporal and anatomical host resistance to chronic Salmonella infection is quantitatively dictated by Nramp1 and influenced by host genetic background. PLoS One 9:e111763
Martínez, Luary C; Vadyvaloo, Viveka (2014) Mechanisms of post-transcriptional gene regulation in bacterial biofilms. Front Cell Infect Microbiol 4:38
Myers, Nicolle D; Chantratita, Narisara; Berrington, William R et al. (2014) The role of NOD2 in murine and human melioidosis. J Immunol 192:300-7
Correia, Bruno E; Bates, John T; Loomis, Rebecca J et al. (2014) Proof of principle for epitope-focused vaccine design. Nature 507:201-6
Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael et al. (2014) Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon. J Bacteriol 196:1412-24
Pruneda, Jonathan N; Smith, F Donelson; Daurie, Angela et al. (2014) E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis. EMBO J 33:437-49
Sureka, Kamakshi; Choi, Philip H; Precit, Mimi et al. (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158:1389-401

Showing the most recent 10 out of 184 publications