The primary goal of the research is to identify the FT and BP genes responsible for several intrinsic antibiotic resistance, virulence and stress tolerance traits. The results should provide mechanistic insights into the physiological basis of each and may identify potential antibacterial drug targets. An additional set of experiments will help define BP species diversity in these and other phenotypes, and may identify diagnostic tests to differentiate natural isolates. As part of the project, a new-generation sequencing-based technology for assessing the makeup of transposon mutant pools of will be developed.

Public Health Relevance

1. Functions required for intrinsic antibiotic resistance and stress resistance are potential drug targets for combination antibacterial therapy. We anticipate that conserved homeostatic functions will be represented and may represent broad host range targets. 2. The analysis of B. pseudomallei phenotypic species variation may identify diagnostic growth tests for discriminating rapidly between natural (non-laboratory) isolates. 3. The F. novicida mutant-phenotype database to be constructed should eventually serve as a reference for identifying the mechanisms of action of new antibacterial compounds (

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057141-10
Application #
8447089
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
2015-02-28
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$218,266
Indirect Cost
$68,766
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Majerczyk, Charlotte; Schneider, Emily; Greenberg, E Peter (2016) Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants. Elife 5:
Miller, Samuel I; Chaudhary, Anu (2016) A Cellular GWAS Approach to Define Human Variation in Cellular Pathways Important to Inflammation. Pathogens 5:
Jorgensen, Ine; Zhang, Yue; Krantz, Bryan A et al. (2016) Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J Exp Med 213:2113-28
Jorgensen, Ine; Lopez, Joseph P; Laufer, Stefan A et al. (2016) IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. Eur J Immunol 46:2761-2766
Chapman, John D; Edgar, J Scott; Goodlett, David R et al. (2016) Use of captive spray ionization to increase throughput of the data-independent acquisition technique PAcIFIC. Rapid Commun Mass Spectrom 30:1101-7
Hayden, Hillary S; Matamouros, Susana; Hager, Kyle R et al. (2016) Genomic Analysis of Salmonella enterica Serovar Typhimurium Characterizes Strain Diversity for Recent U.S. Salmonellosis Cases and Identifies Mutations Linked to Loss of Fitness under Nitrosative and Oxidative Stress. MBio 7:e00154
Fan, Vincent S; Gharib, Sina A; Martin, Thomas R et al. (2016) COPD disease severity and innate immune response to pathogen-associated molecular patterns. Int J Chron Obstruct Pulmon Dis 11:467-77
Yen, Gloria S; Edgar, J Scott; Yoon, Sung Hwan et al. (2016) Polydimethylsiloxane microchannel coupled to surface acoustic wave nebulization mass spectrometry. Rapid Commun Mass Spectrom 30:1096-100
Salipante, Stephen J; Roach, David J; Kitzman, Jacob O et al. (2015) Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 25:119-28
Maltez, Vivien I; Tubbs, Alan L; Cook, Kevin D et al. (2015) Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium. Immunity 43:987-97

Showing the most recent 10 out of 240 publications