Diagnostic reagents and assays to detect biodefense pathogens are critical needs for public safety. Two key components for a successful molecular diagnostic assay are a sensor component that binds directly to the targeted organism, or to a product secreted by the organism, and a signal domain that indicates, with great sensitivity, when the sensor has bound the target molecule. Over the past 18 months we have implemented proven technologies: phage-display, covalent protein-DNA linkage, and real-time PCR, along with the results from our antigen discovery research, to begin to create a powerful diagnostic assay to detect the presence of Francisella tularensis (Ft) in biological and environmental samples as well as immune responses directed against Ft. The protein-DNA chimeras central to these assays are called tadpoles, which are capable of achieving a much greater level of sensitivity (~106-fold greater) compared to analogous enzyme-linked immunosorbent assays (ELISAs). Furthermore these diagnostics are able to identify target molecules over a wide dynamic range of concentrations. In this proposal, we will multiplex the tadpole assay to include additional fever and diarrheal agents as outlined in the overall WRCE diagnostic theme plan. Ft, Rift Valley fever virus, and Cryptosporidium parvum will serve as initial, comparative controls for the platform WRCE diagnostic approaches, and the agent list will be expanded in later years according to the WRCE plan. Furthermore, we will seek to integrate elemental technologies from other platforms being developed in the WRCE diagnostic group, such as lateral flow microfluidics, to expand the utility of tadpole diagnostics as they are further multiplexed for the simultaneous detection of numerous agents and are adapted for point-of-care usage in addition to their use in the reference laboratory.

Public Health Relevance

Diagnostics that can detect minute quantities of a biodefense pathogen organism and/or that can detect whether a person has been infected by such an organism early in the course of infection are greatly needed. We will use cutting-edge strategies to create diagnostic reagents and assays that can identify tiny amounts of multiple biodefense pathogens in complex samples to a high degree of sensitivity. The strategies applied here can easily be adapted to create similar reagents for any biodefense or infectious disease concern.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057156-10
Application #
8440794
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
2015-02-28
Budget Start
2013-03-01
Budget End
2015-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$423,063
Indirect Cost
$62,528
Name
University of Texas Medical Br Galveston
Department
Type
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Navarro, Juan-Carlos; Giambalvo, Dileyvic; Hernandez, Rosa et al. (2016) Isolation of Madre de Dios Virus (Orthobunyavirus; Bunyaviridae), an Oropouche Virus Species Reassortant, from a Monkey in Venezuela. Am J Trop Med Hyg 95:328-38
Park, Arnold; Yun, Tatyana; Hill, Terence E et al. (2016) Optimized P2A for reporter gene insertion into Nipah virus results in efficient ribosomal skipping and wild-type lethality. J Gen Virol 97:839-43
Aghazadeh, Amirali; Lin, Adam Y; Sheikh, Mona A et al. (2016) Universal microbial diagnostics using random DNA probes. Sci Adv 2:e1600025
Inglis, Fiona M; Lee, Kim M; Chiu, Kevin B et al. (2016) Neuropathogenesis of Chikungunya infection: astrogliosis and innate immune activation. J Neurovirol 22:140-8
Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A et al. (2016) Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders. Infect Immun 84:2345-54
Chen, Hui; Hagström, Anna E V; Kim, Jinsu et al. (2016) Flotation Immunoassay: Masking the Signal from Free Reporters in Sandwich Immunoassays. Sci Rep 6:24297
Crannell, Zachary Austin; Cabada, Miguel Mauricio; Castellanos-Gonzalez, Alejandro et al. (2015) Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples. Am J Trop Med Hyg 92:583-7
Walker, David H; Dumler, J Stephen (2015) The role of CD8 T lymphocytes in rickettsial infections. Semin Immunopathol 37:289-99
Mott, Tiffany M; Vijayakumar, Sudhamathi; Sbrana, Elena et al. (2015) Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development. PLoS Negl Trop Dis 9:e0003863
Gregory, Anthony E; Judy, Barbara M; Qazi, Omar et al. (2015) A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine 11:447-56

Showing the most recent 10 out of 362 publications