Rickettsia prowazekii is one of the most lethal bacterial pathogens known to man;it has decimated entire armies and has been weaponized. It is a category B biothreat select agent because of transmissibility by aerosol, low infectious dose, high stability, and causation of severe illness with a high case-fatality ratio. The development of a cross-reactive vaccine is feasible because natural rickettsial infection provides protective immunity in survivors of epidemic (as well as murine) typhus, and because cross-protection has been demonstrated experimentally;nevertheless, safe and effective vaccines do not exist because of our incomplete understanding of the immune correlates of protection, and because the protective antigens remain unidentified. Thus, the objective of this application is to discover cross-protective rickettsial antigens recognized by T and B lymphocytes. We hypothesize that a subunit vaccine based on cross-reactive rickettsial antigens will protect mice, and a novel humanized mouse model, from lethal homologous and heterologous rickettsial challenges. This investigation will contribute to the long-term goal of developing immunotherapeutic agents for humans against rickettsiae.
Five specific aims with genome-wide approaches will address the hypothesis: 1) identify immunological correlates of protection against rickettsial infection;2) identify new MHC class l-restricted cross-reactive rickettsial antigens recognized by CD8+ T lymphocytes;3) identify MHC class ll-restricted cross-reactive rickettsial antigens recognized by CD4+ T lymphocytes;4) identify cross-reactive rickettsial antigens recognized by anti-rickettsial antibodies;and 5) determine the protection conferred by a subunit vaccine against a lethal challenge with Rickettsia.
The first aim will provide critical definitions of immune correlates of protection that will guide the selection and evaluation of vaccination protocols.
Aims 2, 3, and 4 will identify rickettsial T cell and B cell antigens through a systematic evaluation of all R. prowazekii genes. The fifth aim will identify a vaccine formulation and vaccination protocol that will provide a durable multifunctional and cross-reactive protective immune response. In this way, our research directly addresses WRCE's strategic plan and NIAID's Biodefense Research Agenda. The innovation of this research lies in the systematic definition of immune correlates of protection, the discovery of rickettsial antigens through a comprehensive genomic screen, the testing of multiple vaccine formulations, and the use of a highly relevant mouse model with a reconstituted functional human immune system.

Public Health Relevance

We will develop an anti-R/c/cetts/a subunit vaccine that will be an efficient deterrent to the weaponization of R. prowazekii. This vaccine will be an important resource to prevent an underestimated number of deaths and the severe morbidity caused by R. prowazekii and R. typhi throughout the world.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Medical Br Galveston
United States
Zip Code
Paterson, Andrew S; Raja, Balakrishnan; Garvey, Gavin et al. (2014) Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays. Anal Chem 86:9481-8
Santiago, Felix W; Covaleda, Lina M; Sanchez-Aparicio, Maria T et al. (2014) Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol 88:4572-85
Pflughoeft, Kathryn J; Swick, Michelle C; Engler, David A et al. (2014) Modulation of the Bacillus anthracis secretome by the immune inhibitor A1 protease. J Bacteriol 196:424-35
Lavinder, Jason J; Wine, Yariv; Giesecke, Claudia et al. (2014) Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc Natl Acad Sci U S A 111:2259-64
Valbuena, Gustavo; Halliday, Hailey; Borisevich, Viktoriya et al. (2014) A human lung xenograft mouse model of Nipah virus infection. PLoS Pathog 10:e1004063
Nieves, Wildaliz; Petersen, Hailey; Judy, Barbara M et al. (2014) A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin Vaccine Immunol 21:747-54
Gardner, Christina L; Hritz, Jozef; Sun, Chengqun et al. (2014) Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design. PLoS Negl Trop Dis 8:e2719
Litvinov, Julia; Hagström, Anna E V; Lopez, Yubitza et al. (2014) Ultrasensitive immuno-detection using viral nanoparticles with modular assembly using genetically-directed biotinylation. Biotechnol Lett 36:1863-8
Caro-Gomez, Erika; Gazi, Michal; Goez, Yenny et al. (2014) Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine 32:4968-76
Georgiou, George; Ippolito, Gregory C; Beausang, John et al. (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158-68

Showing the most recent 10 out of 303 publications