The Region IV Southeast Regional Center of Excellence for Emerging Infections and Biodefense (SERCEB) consists of six member institutions and 15 affiliate institutions across the Southeast. The University of North Carolina at Chapel Hill is the lead institution, with member institutions including the Duke University, Emory University, Vanderbilt University, the University of Alabama at Birmingham and the University of Florida-Gainesville. The goals of SERCEB are to develop new vaccines, therapeutics and diagnostics to better protect the nation against potential bioterrorist and emerging infectious disease threats. This is accomplished through interdisciplinary and collaborative research using cutting-edge science and technologies. SERCEB brings new investigators to the biodefense effort through a combination of educational programs, support of innovative new projects, and the synergistic interactions among its world-class investigators.

Public Health Relevance

The mission of SERCEB is to conduct research on emerging infectious diseases and other biodefense agents for the development of vaccines, therapeutics, and diagnostics for potential biothreats to our nation is fulfilled.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057157-11
Application #
8437237
Study Section
Special Emphasis Panel (ZAI1-DDS-M (J1))
Program Officer
Schaefer, Michael R
Project Start
2003-09-04
Project End
2014-02-28
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
11
Fiscal Year
2013
Total Cost
$7,226,237
Indirect Cost
$1,175,147
Name
University of North Carolina Chapel Hill
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Smartt, Chelsea T; Shin, Dongyoung; Alto, Barry W (2017) Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus. Mem Inst Oswaldo Cruz 112:829-837
Purcell, Erin B; McKee, Robert W; Courson, David S et al. (2017) A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infect Immun 85:
Ponnuswamy, Padmapriya; Joffre, Jeremie; Herbin, Olivier et al. (2017) Angiotensin II synergizes with BAFF to promote atheroprotective regulatory B cells. Sci Rep 7:4111
Silva, Laurie A; Dermody, Terence S (2017) Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 127:737-749
Elong Ngono, Annie; Chen, Hui-Wen; Tang, William W et al. (2016) Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection. EBioMedicine 13:284-293
Bowles, R D; Karikari, I O; VanDerwerken, D N et al. (2016) In vivo luminescent imaging of NF-?B activity and NF-?B-related serum cytokine levels predict pain sensitivities in a rodent model of peripheral neuropathy. Eur J Pain 20:365-76
Rowse, Michael; Qiu, Shihong; Tsao, Jun et al. (2016) Reduction of Influenza Virus Envelope's Fusogenicity by Viral Fusion Inhibitors. ACS Infect Dis 2:47-53
Ashbrook, Alison W; Lentscher, Anthony J; Zamora, Paula F et al. (2016) Antagonism of the Sodium-Potassium ATPase Impairs Chikungunya Virus Infection. MBio 7:
Bates, John T; Pickens, Jennifer A; Schuster, Jennifer E et al. (2016) Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates. Vaccine 34:950-6
Alayli, Farah; Scholle, Frank (2016) Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 496:227-236

Showing the most recent 10 out of 387 publications