This project will investigate the role of human antibodies in protection against or enhancement of infection caused by serotype 3 dengue viruses. Pre-existing heterotypic dengue antibody is a risk factor for lifethreatening severe illness, designated dengue hemorrhagic fever (DHF). Although it is well established that the induction of heterotypic dengue antibodies can predispose subjects to DHF, the molecular basis for this problem is not well understood. This issue is a major obstacle to effective development of dengue vaccines as it is not clear that tetravalent vaccine formulations can be established that always retain the immunogenicity of all four serotypes. Better knowledge of the molecular basis of antibody-mediated neutralization of infection is needed. In the work proposed in this application, we will derive large panels of human monoclonal antibodies directed to dengue virus serotype 3 from the B cells of subjects previously infected with that virus. In previous work funded by the RCE, we have developed a very reliable and robust method for generating human monoclonal antibody secretign hybridoma lines from immune donors. We will determine the genetic and structural basis for effective neutralization of dengue viruses by sequence analysis of antibodies, generation of recombinant antibodies for study of naturally occurring somatic mutations, generation of escape mutant viruses, definition of determinants of components of affinity (on and off rates), and determination of structures of immunodominant antibodies bound to viral antigens.

Public Health Relevance

This project is highly relevant to the goals of the SERCEB RCE, specifically defining important mechanisms of immunity to a virus that is a major cause of human illness (approximately 100 million febrile illnesses a year worldwide).

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057157-11
Application #
8437238
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
11
Fiscal Year
2013
Total Cost
$339,124
Indirect Cost
$55,150
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Dethoff, Elizabeth A; Boerneke, Mark A; Gokhale, Nandan S et al. (2018) Pervasive tertiary structure in the dengue virus RNA genome. Proc Natl Acad Sci U S A 115:11513-11518
Graham, Rachel L; Deming, Damon J; Deming, Meagan E et al. (2018) Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun Biol 1:179
Qi, Xiaoxuan; Wang, Wenjian; Dong, Haohao et al. (2018) Expression and X-Ray Structural Determination of the Nucleoprotein of Lassa Fever Virus. Methods Mol Biol 1604:179-188
Kocher, Jacob F; Lindesmith, Lisa C; Debbink, Kari et al. (2018) Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. MBio 9:
Dhanwani, Rekha; Huang, Qinfeng; Lan, Shuiyun et al. (2018) Establishment of Bisegmented and Trisegmented Reverse Genetics Systems to Generate Recombinant Pichindé Viruses. Methods Mol Biol 1604:247-253
Shao, Junjie; Liu, Xiaoying; Liang, Yuying et al. (2018) Assays to Assess Arenaviral Glycoprotein Function. Methods Mol Biol 1604:169-178
Huang, Qinfeng; Shao, Junjie; Liang, Yuying et al. (2018) Assays to Demonstrate the Roles of Arenaviral Nucleoproteins (NPs) in Viral RNA Synthesis and in Suppressing Type I Interferon. Methods Mol Biol 1604:189-200
Gunn, Bronwyn M; Jones, Jennifer E; Shabman, Reed S et al. (2018) Ross River virus envelope glycans contribute to disease through activation of the host complement system. Virology 515:250-260
Shao, Junjie; Liang, Yuying; Ly, Hinh (2018) Roles of Arenavirus Z Protein in Mediating Virion Budding, Viral Transcription-Inhibition and Interferon-Beta Suppression. Methods Mol Biol 1604:217-227
Wirawan, Melissa; Fibriansah, Guntur; Marzinek, Jan K et al. (2018) Mechanism of Enhanced Immature Dengue Virus Attachment to Endosomal Membrane Induced by prM Antibody. Structure :

Showing the most recent 10 out of 400 publications