Dengue viruses (DENV) are emerging, mosquito-borne Flaviviruses and the agents of dengue fever (DF) and dengue hemorrhagic fever (DHF). The NIAID has listed dengue (DEN) as a category A priority agent with respect to Biodefense and Emerging Infections research. A large body of work has demonstrated that people infected with DENV develop long-term protective immunity to the infecting serotype but not to other serotypes. During a second infection with a different serotype, the risk of severe disease is greater because cross-reactive immunity can exacerbate the disease. Efforts to develop DEN vaccines have been hampered by the dual role of immunity in protection and pathogenesis. We know very little about the antibody repertoire in people who have been infected with dengue. The main goal of this project is to use DENV3 as a model for defining the viral epitopes engaged by human antibody and to determine the functional outcome of these interactions. Our overall hypothesis is that a neutralizing antibody response is directed towards type-specific epitopes on domain III of E protein, whereas a non-neutralizing and potentially pathogenic antibody response is directed towards cross-reactive epitopes on domains I and II of E protein.
In aim 1 tudies will be done to produce human monoclonal antibodies from people who have recovered from DENV nfections.
In aim 2 a selected subset of human MAbs will be mapped to specific epitopes and functionally characterized for neutralizing or enhancing activity using cell culture and an animal model. The current dogma is that the main type-specific neutralization epitopes are conserved within each serotype. Our preliminary studies indicate that surface exposed regions on E protein of DENV3 are highly variable between trains.
In aim 3 we will determine if the main antibody epitopes are conserved among DENV3 strains. This project takes advantage of a panel of reagents including well characterized virus strains, human samples and a DENV3 infectious clone available at UNC. The project also utilizes antibody and protein cores available within SERCEB as well as a new rodent model of DENV developed by a SERCEB investigator. The study is expected to reveal mechanisms of antibody mediated neutralization or enhancement of DENV3. This information is directly applicable to the evaluation of the safety and efficacy of candidate dengue vaccines.

Public Health Relevance

Dengue is an emerging virus responsible for severe disease in tropical countries. The most practical solution to dengue is to develop a safe and effective vaccine. We propose to study how human antibodies neutralize dengue virus. The studies are directly relevant to developing and evaluating vaccines.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Guo, Haitao; Gao, Jianmei; Taxman, Debra J et al. (2014) HIV-1 infection induces interleukin-1? production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 289:21716-26
Emery, Felicia D; Stabenow, Jennifer M; Miller, Mark A (2014) Efficient inactivation of Burkholderia pseudomallei or Francisella tularensis in infected cells for safe removal from biosafety level 3 containment laboratories. Pathog Dis 71:276-81
Rice, Amanda D; Adams, Mathew M; Lindsey, Scott F et al. (2014) Protective properties of vaccinia virus-based vaccines: skin scarification promotes a nonspecific immune response that protects against orthopoxvirus disease. J Virol 88:7753-63
Pop, Laurentiu M; Barman, Stephen; Shao, Chunli et al. (2014) A reevaluation of CD22 expression in human lung cancer. Cancer Res 74:263-71
Agnihothram, Sudhakar; Yount Jr, Boyd L; Donaldson, Eric F et al. (2014) A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant. MBio 5:e00047-14
Zellweger, Raphaƫl M; Eddy, William E; Tang, William W et al. (2014) CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. J Immunol 193:4117-24
Zhao, Jincun; Li, Kun; Wohlford-Lenane, Christine et al. (2014) Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A 111:4970-5
Krumm, Stefanie A; Yan, Dan; Hovingh, Elise S et al. (2014) An orally available, small-molecule polymerase inhibitor shows efficacy against a lethal morbillivirus infection in a large animal model. Sci Transl Med 6:232ra52
Blake, Lauren E; Garcia-Blanco, Mariano A (2014) Human genetic variation and yellow fever mortality during 19th century U.S. epidemics. MBio 5:e01253-14
de Alwis, Ruklanthi; de Silva, Aravinda M (2014) Measuring antibody neutralization of dengue virus (DENV) using a flow cytometry-based technique. Methods Mol Biol 1138:27-39

Showing the most recent 10 out of 288 publications