Toll-like receptors (TLRs) play a pivotal role in shaping then host immune response to a pathogen or a vaccine. Our understanding of the mechanisms by which this occurs, have arisen from explorations that probe the response of immune cells to a single TLR ligand. However, microbes and vaccines do not simply stimulate a single TLR, but rather stimulate combinations of different TLRs. Recent work by Lanzavecchia and others suggests that the combinatorial activation of multiple TLRs result in a synergistic activation of cytokine production by dendritic cells (DCs). The impact of this synergy on the adaptive immune response is poorly understood. In particular, there is little or no understanding of the innate immune mechanisms that affect critical variables of the B cell response, such as memory B cell generation, affinity maturation, and induction of neutralizing antibodies. Our preliminary data in mice, suggest that TLR ligands administered with an antigen, can elicit antigen-specific antibody responses. In particular, specific combinations of TLR ligands result in a synergistic induction of the antigen-specific antibody responses, and in the induction of high avidity antibodies. The precise mechanism by which this occurs is a mystery, and will be the major focus of this proposal, and will be achieved in the following aims:
Aim 1 : To determine whether combined stimulation with TLR4 + TLR7/8 ligands results in a synergistic activation of the germinal center pathway of memory B-cell differentiation Aim 2: To determine the cellular and molecular mechanism(s) by which TLR ligands act synergistically to stimulate antigen-specific B cell responses Aim 3: To determine the "quality" of antibody that is optimally suited for protection against specific category A-C agents The successful completion of these aims, will greatly facilitate the rational design of vaccines that stimulate optimally effective types of B cell responses against various pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057157-11
Application #
8437252
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
11
Fiscal Year
2013
Total Cost
$341,944
Indirect Cost
$55,607
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Ashbrook, Alison W; Lentscher, Anthony J; Zamora, Paula F et al. (2016) Antagonism of the Sodium-Potassium ATPase Impairs Chikungunya Virus Infection. MBio 7:
Bowles, R D; Karikari, I O; VanDerwerken, D N et al. (2016) In vivo luminescent imaging of NF-κB activity and NF-κB-related serum cytokine levels predict pain sensitivities in a rodent model of peripheral neuropathy. Eur J Pain 20:365-76
Alayli, Farah; Scholle, Frank (2016) Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 496:227-36
Bates, John T; Pickens, Jennifer A; Schuster, Jennifer E et al. (2016) Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates. Vaccine 34:950-6
Fibriansah, Guntur; Tan, Joanne L; Smith, Scott A et al. (2015) A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat Commun 6:6341
de St Maurice, Annabelle; Grijalva, Carlos G; Fonnesbeck, Christopher et al. (2015) Racial and Regional Differences in Rates of Invasive Pneumococcal Disease. Pediatrics 136:e1186-94
Roberts, Lydia M; Ledvina, Hannah E; Tuladhar, Shraddha et al. (2015) Depletion of alveolar macrophages in CD11c diphtheria toxin receptor mice produces an inflammatory response. Immun Inflamm Dis 3:71-81
Smith, Scott A; Silva, Laurie A; Fox, Julie M et al. (2015) Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host Microbe 18:86-95
Pulendran, Bali (2015) The varieties of immunological experience: of pathogens, stress, and dendritic cells. Annu Rev Immunol 33:563-606
Price, Aryn A; Sampson, Timothy R; Ratner, Hannah K et al. (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci U S A 112:6164-9

Showing the most recent 10 out of 375 publications