Arthropod-borne flaviviruses, and especially dengue viruses, cause a wide range of important human diseases for which there are no specific therapies. To address this critical shortfall in preparedness to confront these emerging and re-emerging viruses we have established a program to investigate host factors as targets of anti-dengue therapy. We have discovered many novel drug targets using functional genomics and en masse biochemical approaches. Among these are the 3'-5' exonucleases of the DnaQ/DEDDh superfamily of enzymes: EXD2, WRN and ERI3 (PRNPIP)). These enzymes are highly related to virally encoded exonucleases in SARS coronavirus and Lassa fever virus suggesting that the DnaQ/DEDDh superfamily of enzymes is widely used by pathogenic viruses and thus inhibitors of these enzymes could have broad spectrum of activity. We propose to characterize these enzymes in detail and to identify compounds that inhibit their activity and dengue infection. This will be achieved by 1) Developing in vitro assays for EXD2, WRN and ERI3 and 2) developing in vivo (yeast-based) assays to screen inhibitors of EXD2, WRN and ERI3. Significance to public health. Flaviviruses, and especially dengue virus, are an emerging threat to public health in the US, a current risk to our armed forces and other citizens deployed around the world, and a major problem globally. At this time there is little that can be done to prevent or treat the majority of flaviviral infections and therefore development of anti-flaviviral drugs is of crucial importance.

Public Health Relevance

Mosquito transmitted dengue viruses, cause a wide range of important human diseases for which there are no specific therapies. To address this critical shortfall in preparedness to confront these emerging and re-emerging viruses we propose to carry out work that will set the foundation for the discovery of new compounds that inhibit cellular enzymes that these viruses need to grow.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Guo, Haitao; Gao, Jianmei; Taxman, Debra J et al. (2014) HIV-1 infection induces interleukin-1? production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 289:21716-26
Emery, Felicia D; Stabenow, Jennifer M; Miller, Mark A (2014) Efficient inactivation of Burkholderia pseudomallei or Francisella tularensis in infected cells for safe removal from biosafety level 3 containment laboratories. Pathog Dis 71:276-81
Pop, Laurentiu M; Barman, Stephen; Shao, Chunli et al. (2014) A reevaluation of CD22 expression in human lung cancer. Cancer Res 74:263-71
Rice, Amanda D; Adams, Mathew M; Lindsey, Scott F et al. (2014) Protective properties of vaccinia virus-based vaccines: skin scarification promotes a nonspecific immune response that protects against orthopoxvirus disease. J Virol 88:7753-63
Zellweger, Raphaƫl M; Eddy, William E; Tang, William W et al. (2014) CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. J Immunol 193:4117-24
Agnihothram, Sudhakar; Yount Jr, Boyd L; Donaldson, Eric F et al. (2014) A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant. MBio 5:e00047-14
Krumm, Stefanie A; Yan, Dan; Hovingh, Elise S et al. (2014) An orally available, small-molecule polymerase inhibitor shows efficacy against a lethal morbillivirus infection in a large animal model. Sci Transl Med 6:232ra52
Zhao, Jincun; Li, Kun; Wohlford-Lenane, Christine et al. (2014) Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A 111:4970-5
de Alwis, Ruklanthi; de Silva, Aravinda M (2014) Measuring antibody neutralization of dengue virus (DENV) using a flow cytometry-based technique. Methods Mol Biol 1138:27-39
Blake, Lauren E; Garcia-Blanco, Mariano A (2014) Human genetic variation and yellow fever mortality during 19th century U.S. epidemics. MBio 5:e01253-14

Showing the most recent 10 out of 288 publications