Henipaviruses show increasing impact as causes of central nervous system illness in the human community. We propose to apply our understanding of paramyxovirus entry to the development of new strategies for inhibiting infection that will apply to newly emerging paramyxoviruses. The first step in paramyxovirus infection is the binding of the receptor-binding protein (G for Hendra and Nipah viruses;HeV/NiV) to receptor on the cell's surface (EFNB2 for HeV/NiV). Receptor engagement activates the viral fusion proteins (F) to fusion-ready conformation, and F then inserts into the target cell membrane, fusing the viral envelope with the cell's membrane and allowing viral entry. In a novel therapeutic approach, we will identify compounds that induce F to trigger prematurely, inactivating the viruses before they can enter the target cells. 1. Proof of concept for new antiviral platform: Paramyxovirus receptor mimics induce premature triggering of F distant from the target cell.
This aim will test the hypothesis that if G-receptor interaction can be mimicked before an infectious viral particle binds to the cell surface, F can be induced to be triggered prematurely and be inactivated. We will assess whether soluble receptor-mimicking molecules inhibit multicycle replication in relevant tissue models for human vascular endothelium and for human CMS parenchymal cells. Support of this aim includes evidence for

Public Health Relevance

Hendra and Nipah viruses are urgent concerns for public health due to their transmissible nature and increasing impact on acute and chronic central nervous system disease. This research proposal will lead to a new antiviral strategy that will apply to henipaviruses, existing and emerging paramyxoviruses as well as other enveloped viruses. The results will be highly relevant in light of the importance of paramyxoviruses to human health and the potential broad applicability of the new platform to these and other serious pathogens.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
New York
United States
Zip Code
Johnson, Joshua C; Martinez, Osvaldo; Honko, Anna N et al. (2014) Pyridinyl imidazole inhibitors of p38 MAP kinase impair viral entry and reduce cytokine induction by Zaire ebolavirus in human dendritic cells. Antiviral Res 107:102-9
Gough, Daniel J; MariƩ, Isabelle J; Lobry, Camille et al. (2014) STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation. Blood 124:2252-61
Kazakov, Teymur; Kuznedelov, Konstantin; Semenova, Ekaterina et al. (2014) The RimL transacetylase provides resistance to translation inhibitor microcin C. J Bacteriol 196:3377-85
Rajsbaum, Ricardo; Garcia-Sastre, Adolfo; Versteeg, Gijs A (2014) TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 426:1265-84
Lo, Michael K; Bird, Brian H; Chattopadhyay, Anasuya et al. (2014) Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters. Antiviral Res 101:26-9
Mackow, Erich R; Dalrymple, Nadine A; Cimica, Velasco et al. (2014) Hantavirus interferon regulation and virulence determinants. Virus Res 187:65-71
Varshney, Avanish K; Wang, Xiaobo; Aguilar, Jorge L et al. (2014) Isotype switching increases efficacy of antibody protection against staphylococcal enterotoxin B-induced lethal shock and Staphylococcus aureus sepsis in mice. MBio 5:e01007-14
Chung, Lawton K; Philip, Naomi H; Schmidt, Valentina A et al. (2014) IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM. MBio 5:e01402-14
DiLillo, David J; Tan, Gene S; Palese, Peter et al. (2014) Broadly neutralizing hemagglutinin stalk-specific antibodies require Fc?R interactions for protection against influenza virus in vivo. Nat Med 20:143-51
Szaba, Frank M; Kummer, Lawrence W; Duso, Debra K et al. (2014) TNF? and IFN? but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection. PLoS Pathog 10:e1004142

Showing the most recent 10 out of 549 publications