Type I interferon (IFN) provides an initial component of innate immune resistance to viral infection and replication by inducing a large set of antiviral effector proteins capable of inhibiting diverse viruses at multiple points in the infection. Inherent to the effectiveness of this response are cellular signaling pathways that first trigger IFN gene induction in response to infection and subsequently trigger IFN-stimulated gene (ISG) expression in response to secreted IFN. IFN gene induction proceeds through two distinct pathways, a cytosolic signaling system triggered by viral nucleic acid in the cytoplasm that operates in most infected cells and a transmembrane pathway dependent on Toll-like receptor (TLR) proteins that is critical in dendritic cells. The essential nature of the IFN system in antiviral immunity has been demonstrated by genetic and biochemical data, but its ultimate effectiveness is limited by viral evasion through the action of viral virulence factors that impaire IFN action. The underlying hypothesis of our proposed research is that through better understaning the molecular mechanisms of IFN induction and action and their impairment by viral evasion, we will be able to devise novel therapeutics based on augmenting innate immunity and inhibiting viral evasion. This project focuses on three distinct viruses that each impair the IFN pathway, influenza A virus, vaccinia virus, and chikungunya virus;will analyze the interaction between viruses and IFN signaling in a unique set of genetically modified dendritic cells lines;and will develop a platform to screen for small molecule inhibitors of viral virulence. This work will be performed in close collaboration with other members of the innate immunity team, Drs. Easier, Garcia-Sastre, and Wu. This project is well integrated into the mission of the RCE. Innate immunity has emerged as an essential component of the key focus areas of the RCE, impacting on adaptive immunity and being critical for athe adjuvant effects of vaccines;providing an important diagnostic indication of infection;and uncovering a novel approach to therapeutics by targeting the interaction between the innate immune system and virulence factors. Knowledge gained in these studies will also be applicable to microbial innate immunity that relies on similar mechanisms.

Public Health Relevance

Emerging and re-emerging viral diseases are a growing concern in the world. Innate immunity represents an early and essential aspect of antiviral resistance, but its effectiveness is limited by the action of viral virulence components. A better understanding of the mechanisms of innate immunity and its evasion by viruses will allow development of novel approaches to therapy and drug discovery.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057158-10
Application #
8444628
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
2015-02-28
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$391,758
Indirect Cost
$111,736
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Li, Xiao-Ping; Kahn, Jennifer N; Tumer, Nilgun E (2018) Peptide Mimics of the Ribosomal P Stalk Inhibit the Activity of Ricin A Chain by Preventing Ribosome Binding. Toxins (Basel) 10:
Goldman, David L; Nieves, Edward; Nakouzi, Antonio et al. (2018) Serum-Mediated Cleavage of Bacillus anthracis Protective Antigen Is a Two-Step Process That Involves a Serum Carboxypeptidase. mSphere 3:
Marié, Isabelle J; Chang, Hao-Ming; Levy, David E (2018) HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 215:3194-3212
Uhde, Melanie; Ajamian, Mary; Wormser, Gary P et al. (2017) Reply to Naktin. Clin Infect Dis 64:1145-1146
Chen, Han; Coseno, Molly; Ficarro, Scott B et al. (2017) A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions. ACS Infect Dis 3:112-118
Aguilar, Jorge L; Varshney, Avanish K; Pechuan, Ximo et al. (2017) Monoclonal antibodies protect from Staphylococcal Enterotoxin K (SEK) induced toxic shock and sepsis by USA300 Staphylococcus aureus. Virulence 8:741-750
Zhou, Yijun; Li, Xiao-Ping; Chen, Brian Y et al. (2017) Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Sci Rep 7:42912
Moser, Lindsey A; Lim, Pei-Yin; Styer, Linda M et al. (2016) Parameters of Mosquito-Enhanced West Nile Virus Infection. J Virol 90:292-9
Li, Melody M H; Bozzacco, Leonia; Hoffmann, Hans-Heinrich et al. (2016) Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. J Exp Med 213:2931-2947
Charles, Jermilia; Firth, Andrew E; Loroño-Pino, Maria A et al. (2016) Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico. J Gen Virol 97:977-87

Showing the most recent 10 out of 655 publications