The New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (NERCE) has become a focal point for research and development in biodefense and emerging infectious diseases, developing novel approaches to treatment and prevention of infections. NERCE has supported and its core labs have been utilized by scientists from academia, the public health sector and the biopharmaceutical and biotechnology industries based in New England and across the country. The center functions as a catalyst for basic, translational and clinical research scientists to conduct research leading to new products directed against infectious disease. NERCE will continue this mission by supporting research addressing three primary themes - """"""""Highly Pathogenic RNA Viruses"""""""", """"""""Bacterial Toxins and other Pathogenic Proteins"""""""", and """"""""Gram-Negative Bacteria - Pathogenesis and Immunity"""""""". The Center will continue its emphasis on """"""""Chemical Biology"""""""" and high throughput approaches to experimental discovery. NERCE will also be supporting five core labs - """"""""Microbiology and Animal Resources"""""""", """"""""Biomolecule Production"""""""", """"""""Small Molecule Screening"""""""", """"""""Target Identification"""""""", and """"""""Molecular Imaging"""""""". These core resources are available to the entire New England infectious disease community working on NIAID priority pathogens and agents of emerging infectious disease. The small molecule screening core (National Screening Laboratory for the Research Centers of Excellence in Biodefense and Emerging Infectious Diseases Research, or NSRB) supports scientists affiliated with any of the ten Regional Centers. NERCE will also continue its Developmental Projects program and Career Development in Biodefense program in an effort to initiate new research efforts and to attract new investigators to this field.

Public Health Relevance

The programs supported through the New England RCE will provide the basic knowledge necessary for development of therapeutics, vaccines, and diagnostics directed against biodefense and emerging infectious disease pathogens. These programs will also provide training opportunities for investigators entering and active in the field.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057159-07
Application #
7790719
Study Section
Special Emphasis Panel (ZAI1-DDS-M (J1))
Program Officer
Hirschberg, Rona L
Project Start
2003-09-04
Project End
2014-02-28
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
7
Fiscal Year
2010
Total Cost
$10,622,077
Indirect Cost
Name
Harvard University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Nair, Dhanalakshmi R; Chen, Ji; Monteiro, João M et al. (2017) A quinolinol-based small molecule with anti-MRSA activity that targets bacterial membrane and promotes fermentative metabolism. J Antibiot (Tokyo) 70:1009-1019
Huang, Nai-Jia; Pishesha, Novalia; Mukherjee, Jean et al. (2017) Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun 8:423
Mertins, Philipp; Przybylski, Dariusz; Yosef, Nir et al. (2017) An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling. Cell Rep 19:2853-2866
de Wispelaere, Mélissanne; Carocci, Margot; Liang, Yanke et al. (2017) Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Res 139:171-179
Choo, Min-Kyung; Sano, Yasuyo; Kim, Changhoon et al. (2017) TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. J Exp Med 214:1297-1311
Zheng, Huiqing; Colvin, Christopher J; Johnson, Benjamin K et al. (2017) Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 13:218-225
Coulson, Garry B; Johnson, Benjamin K; Zheng, Huiqing et al. (2017) Targeting Mycobacterium tuberculosis Sensitivity to Thiol Stress at Acidic pH Kills the Bacterium and Potentiates Antibiotics. Cell Chem Biol 24:993-1004.e4
Vrentas, Catherine E; Moayeri, Mahtab; Keefer, Andrea B et al. (2016) A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection. J Biol Chem 291:21596-21606
Helenius, Iiro Taneli; Nair, Aisha; Bittar, Humberto E Trejo et al. (2016) Focused Screening Identifies Evoxine as a Small Molecule That Counteracts CO2-Induced Immune Suppression. J Biomol Screen 21:363-71
Fink, Avner; Hassan, Musa A; Okan, Nihal A et al. (2016) Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19. MBio 7:e02243

Showing the most recent 10 out of 412 publications