Francisella tularensis, a pleomorphic, gram-negative, facultative intracellular bacterial pathogen, is the etiologic agent of tularemia, a potentially fatal human disease. The ease with which F. tularensis can be aerosolized and its high degree of infectivity when inhaled have raised concerns about its potential for use in bioterrorism. An empirically derived, still-unlicensed vaccine strain of F. tularensis, LVS, is complicated by several issues: (i) Ft.LVS is still highly virulent in some animal models of infection, (ii) LVS vaccine has.been associated with significant undesirable side effects, (iii) Recipients of LVS vaccine develop incomplete immunity, (iv) The molecular basis for the attenuation of Ft.LVS is unknown. The mechanisms of immune protection against F. tularensis, particularly the highly virulent type A strains, are poorly defined. Our work, along with that of other investigators, has suggested that both humoral immunity (antibody to the O side chain of the lipopolysaccharide) and cellular immunity are critical for protection against this organism. Because of the incomplete understanding of immunity to F. tularensis, we have used three approaches to vaccine development: (1) screening of the vast majority of proteins in the F. tularensis proteome for potentially protective antigens;(2) marked attenuation of the live vaccine strain (Ft.LVS) through the mutation of two essential genes in the O polysaccharide (OPS) biosythesis locus, and (3) construction of a glycoconjugate vaccine composed of the full-length OPS conjugated to a carrier protein. We have obtained critical information on the nature of protective immunity and have used this information to refine our experimental strategy. Our data at this point indicate that the most effective approach will likely be some combination of our prototype vaccines. By combining the glycoconjugate vaccine with an attenuated mutant strain we have elicited protection against respiratory challenge with the wild-type type A strain Schu S4. To our knowledge, such protection has previously been reported only for Ft.LVS immunization. The combination vaccine we have developed is 7 logs less virulent in animal models than Ft.LVS;therefore, we anticipate that it will be considerably safer.

Public Health Relevance

Francisella tularenis is a Category A threat for potential bioterrorism. It causes a disease with high mortality rates and the currently available vaccine has many undesirable side effects. In this project, we have taken a multi-demensional approach to developing a safe and effective vaccine to prevent this.severe infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057159-07
Application #
8038354
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
7
Fiscal Year
2010
Total Cost
$493,122
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
de Wispelaere, Melissanne; Lian, Wenlong; Potisopon, Supanee et al. (2018) Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chem Biol 25:1006-1016.e8
Huang, Nai-Jia; Pishesha, Novalia; Mukherjee, Jean et al. (2017) Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun 8:423
Mertins, Philipp; Przybylski, Dariusz; Yosef, Nir et al. (2017) An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling. Cell Rep 19:2853-2866
Nair, Dhanalakshmi R; Chen, Ji; Monteiro, João M et al. (2017) A quinolinol-based small molecule with anti-MRSA activity that targets bacterial membrane and promotes fermentative metabolism. J Antibiot (Tokyo) 70:1009-1019
Choo, Min-Kyung; Sano, Yasuyo; Kim, Changhoon et al. (2017) TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. J Exp Med 214:1297-1311
de Wispelaere, Mélissanne; Carocci, Margot; Liang, Yanke et al. (2017) Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Res 139:171-179
Umetsu, Dale T (2017) Mechanisms by which obesity impacts upon asthma. Thorax 72:174-177
Zheng, Huiqing; Colvin, Christopher J; Johnson, Benjamin K et al. (2017) Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 13:218-225
Coulson, Garry B; Johnson, Benjamin K; Zheng, Huiqing et al. (2017) Targeting Mycobacterium tuberculosis Sensitivity to Thiol Stress at Acidic pH Kills the Bacterium and Potentiates Antibiotics. Cell Chem Biol 24:993-1004.e4
Böttcher, Thomas; Elliott, Hunter L; Clardy, Jon (2016) Dynamics of Snake-like Swarming Behavior of Vibrio alginolyticus. Biophys J 110:981-92

Showing the most recent 10 out of 417 publications