We propose a platform which will radically change the current approach to antitoxin development by introducing a new strategy that will permit rapid development and commercialization of safe, effective antitoxin products having low development and product costs and long shelf lives. Toxins from microbial and other sources continue to cause substantial human and veterinary pathology and are serious Category A and B biosecurity threats. Treatment for toxin exposure is generally limited to the availability of antitoxin agents. Antibody and antisera products are difficult and expensive agents to prepare in large quantities and have problematic quality control and safety issues and limited shelf life. This is a particularly serious problem for stockpiling and storing antitoxins in preparation of possible bioterrorist events. We have found that a pool of small toxin binding agents, each with a common epitopic tag, will potently protect mice against intoxication when administered with a single anti-tag mAb. In this proposal, we will develop tagged, camelid VHH-based botulinum neurotoxin (BoNT) and Shiga toxin binding agents as anti-toxins. We will optimize the delivery format and test the antitoxin efficacy of the agents co-administered with monoclonal anti-tag antibodies of different isotypes. Through this proposal, antitoxin agents capable of protecting against intoxication with two different BoNT serotypes (A and B) and two different Shiga toxins (Stx1 and 2) will be developed and taken through in vivo testing. If successful, this strategy should have widespread application in antitoxin development, and possibly other therapies in which accelerated clearance of a target is required. The VHHbased products will be economical to produce at scale with long shelf-life and low toxicity

Public Health Relevance

This project will develop a promising, broad new antitoxin strategy, employing as prototypes shiga and botulinum toxins. Both toxins are serious biosecurity threats and each cause foodborne diseases against which currently there is no effective therapy. For example, Shiga toxin from E. coli O157 is a frequent cause of kidney failure in children (e.g. spinach outbreak in 2006).

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
United States
Zip Code
Carocci, Margot; Hinshaw, Stephen M; Rodgers, Mary A et al. (2015) The bioactive lipid 4-hydroxyphenyl retinamide inhibits flavivirus replication. Antimicrob Agents Chemother 59:85-95
Lu, Xi; Skurnik, David; Pozzi, Clarissa et al. (2014) A Poly-N-acetylglucosamine-Shiga toxin broad-spectrum conjugate vaccine for Shiga toxin-producing Escherichia coli. MBio 5:e00974-14
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi et al. (2014) Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation. J Virol 88:12558-71
Derbyshire, Emily R; Min, Jaeki; Guiguemde, W Armand et al. (2014) Dihydroquinazolinone inhibitors of proliferation of blood and liver stage malaria parasites. Antimicrob Agents Chemother 58:1516-22
Böcking, Till; Aguet, François; Rapoport, Iris et al. (2014) Key interactions for clathrin coat stability. Structure 22:819-29
Gorla, Suresh Kumar; McNair, Nina N; Yang, Guangyi et al. (2014) Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrob Agents Chemother 58:1603-14
Gavrish, Ekaterina; Shrestha, Binu; Chen, Chao et al. (2014) In vitro and in vivo activities of HPi1, a selective antimicrobial against Helicobacter pylori. Antimicrob Agents Chemother 58:3255-60
Chamoun-Emanuelli, Ana M; Pécheur, Eve-Isabelle; Chen, Zhilei (2014) Benzhydrylpiperazine compounds inhibit cholesterol-dependent cellular entry of hepatitis C virus. Antiviral Res 109:141-8
Vetter, Michael L; Zhang, Zijuan; Liu, Shuai et al. (2014) Fluorescent visualization of Src by using dasatinib-BODIPY. Chembiochem 15:1317-24
Starkey, Melissa; Lepine, Francois; Maura, Damien et al. (2014) Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 10:e1004321

Showing the most recent 10 out of 289 publications