As part of the New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (NERCE/BEID), the Biomolecule Production Core Laboratory provides services for production of medium to large scale amounts of purified bacterial, mammalian, and viral biomolecules to investigators conducting biodefense research. This core facility is a state-of-the-art laboratory designed to produce both recombinant proteins and native carbohydrate molecules for use in structural analyses and vaccine formulation. This includes, but is not restricted to, investigators in the following categories: those making use of the Proteomics and Small Molecule Screening Core Laboratories who need to produce sufficient quantities of identified proteins to accomplish proposed screens;those developing vaccines containing bacterial carbohydrate components who need large quantities of antigen for analysis in vitro biologic assays and animal studies;and those already expressing target proteins in small scale using recombinant systems who need larger amounts of recombinant protein to expand their research. Investigators provide data demonstrating efficacy of production and purification methods as well as strains or recombinant plasmid preparations where applicable. The laboratory scales-up these protocols for production and purification of 100's of mg of the target biomolecule that is delivered to the investigator with a report outlining the methods used. Since the Biomolecule Production Core opened in 2004, we have collaborated with 19 investigators from 8 research institutions and one company in the production of over 154 different biomolecules. We have conducted 339 fermentation runs for the production of biomolecules, generating 52 Kg of bacterial cells. More than 277 purifications have been completed and we have delivered to investigators 34 Kg of cell paste, 453 mg of purified carbohydrate, and 3.1 g of various purified recombinant protein.

Public Health Relevance

The NERCE Biomolecule Production Core assists investigators from any institution - public, private, academic, commercial, or governmental - conducting research on NIAID priority pathogens that require purified proteins or carbohydrates. The Core currently supports projects screening compounds for inhibition of infection, developing vaccines, testing anti-invectives, and investigating mechanisms of pathogenesis.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
United States
Zip Code
Clark, Margaret J; Miduturu, Chandra; Schmidt, Aaron G et al. (2016) GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein. Cell Chem Biol 23:443-52
Russo, Brian C; Stamm, Luisa M; Raaben, Matthijs et al. (2016) Intermediate filaments enable pathogen docking to trigger type 3 effector translocation. Nat Microbiol 1:16025
Kirienko, Daniel R; Revtovich, Alexey V; Kirienko, Natalia V (2016) A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence. mSphere 1:
Taylor, Travis J; Diaz, Fernando; Colgrove, Robert C et al. (2016) Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector. Virology 496:186-93
Chou, Yi-ying; Cuevas, Christian; Carocci, Margot et al. (2016) Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor. J Virol 90:4494-510
Mellata, Melha; Mitchell, Natalie M; Schödel, Florian et al. (2016) Novel vaccine antigen combinations elicit protective immune responses against Escherichia coli sepsis. Vaccine 34:656-62
Helenius, Iiro Taneli; Nair, Aisha; Bittar, Humberto E Trejo et al. (2016) Focused Screening Identifies Evoxine as a Small Molecule That Counteracts CO2-Induced Immune Suppression. J Biomol Screen 21:363-71
Stone, Laura K; Baym, Michael; Lieberman, Tami D et al. (2016) Compounds that select against the tetracycline-resistance efflux pump. Nat Chem Biol 12:902-904
Balasubramanian, Anuradha; Manzano, Mark; Teramoto, Tadahisa et al. (2016) High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease. Antiviral Res 134:6-16
Vrentas, Catherine E; Moayeri, Mahtab; Keefer, Andrea B et al. (2016) A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection. J Biol Chem 291:21596-21606

Showing the most recent 10 out of 401 publications