Viruses and many bacteria must invade a cell to replicate, and cell entry is a step usefully accessible to inhibitors. Studies of pathogen entry have advanced our understanding of basic cell biological processes and led to discovery of new molecular mechanisms, while also providing opportunities to consider novel strategies for intervention. During the last decade, approaches using biochemistry, genetics, and real-time imaging have led to identification of a number of alternative modes of pathogen uptake, with sometimes subtle, yet critical differences in the way particular cellular structures are deployed. Direct fluorescence imaging of individual internalization events, combined when appropriate with pharmacological or genetic perturbation, resolves ambiguities associated with "ensemble" measurements, and we rely on its use throughout this proposal. This project focuses on understanding the role of multiple modes of clathrin-mediated endocytosis for viral entry and how they relate to the destination of endocytosed virus, information that is relevant to strategies for inhibiting entry, to analysis of cell tropism and different outcomes for infection of different tissues, and to relating information from entry of pseudotyped viruses with heterologous envelope proteins to entry of authentic virions. This project also aims to understand the role of the clathrin endocytic machinery in infection by invasive and adherent bacterial pathogens.

Public Health Relevance

This project will focus on early molecular events involving entry of infectious agents into target cells using real-time live cell imaging. The results of these studies will identify critical steps in the infectious process that may be targets for antimicrobial therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057159-10
Application #
8441645
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$250,541
Indirect Cost
$77,785
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Carocci, Margot; Hinshaw, Stephen M; Rodgers, Mary A et al. (2015) The bioactive lipid 4-hydroxyphenyl retinamide inhibits flavivirus replication. Antimicrob Agents Chemother 59:85-95
Lu, Xi; Skurnik, David; Pozzi, Clarissa et al. (2014) A Poly-N-acetylglucosamine-Shiga toxin broad-spectrum conjugate vaccine for Shiga toxin-producing Escherichia coli. MBio 5:e00974-14
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi et al. (2014) Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation. J Virol 88:12558-71
Böcking, Till; Aguet, François; Rapoport, Iris et al. (2014) Key interactions for clathrin coat stability. Structure 22:819-29
Derbyshire, Emily R; Min, Jaeki; Guiguemde, W Armand et al. (2014) Dihydroquinazolinone inhibitors of proliferation of blood and liver stage malaria parasites. Antimicrob Agents Chemother 58:1516-22
Gavrish, Ekaterina; Shrestha, Binu; Chen, Chao et al. (2014) In vitro and in vivo activities of HPi1, a selective antimicrobial against Helicobacter pylori. Antimicrob Agents Chemother 58:3255-60
Gorla, Suresh Kumar; McNair, Nina N; Yang, Guangyi et al. (2014) Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrob Agents Chemother 58:1603-14
Vetter, Michael L; Zhang, Zijuan; Liu, Shuai et al. (2014) Fluorescent visualization of Src by using dasatinib-BODIPY. Chembiochem 15:1317-24
Chamoun-Emanuelli, Ana M; Pécheur, Eve-Isabelle; Chen, Zhilei (2014) Benzhydrylpiperazine compounds inhibit cholesterol-dependent cellular entry of hepatitis C virus. Antiviral Res 109:141-8
Morin, Benjamin; Whelan, Sean P J (2014) Sensitivity of the polymerase of vesicular stomatitis virus to 2' substitutions in the template and nucleotide triphosphate during initiation and elongation. J Biol Chem 289:9961-9

Showing the most recent 10 out of 289 publications