Although there is great concern over emerging viruses and viruses on the NIAID category A-C priority pathogen lists, there are relatively few prophylactics or therapeutics for these viruses, and most which do exist are highly pathogen-specific or have undesirable side effects or other disadvantages. We have developed a radically new and very broad-spectrum antiviral therapeutic/prophylactic that has the potential to revolutionize the treatment of viral infections, including those due to emerging, category A-C, and common clinical pathogens. Our dsRNA (double-stranded RNA) activated caspase (DAC) approach selectively induces apoptosis in cells containing any viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have previously created a DAC and shown that it is nontoxic and effective against 10 different viruses in 10 mammalian cell types. We have also demonstrated that it is nontoxic in mice and rescues mice from a lethal H1N1 influenza challenge. A large number of viruses on the category A-C lists belong to the arenavirus, bunyavirus, and flavivirus families, virus families against which we have not previously tested DAC. Therefore, the experimental focus of this proposal is to test DAC against representative members of these virus families.
The specific aims are to: 1. Demonstrate efficacy in multiple mammalian cell types against representative members of the arenavirus, bunyavirus, and flavivirus families. 2. Perform DAC pharmacokinetic analyses and assess DAC immunogenicity in vivo. 3. Demonstrate antiviral efficacy in a lethal mouse model using the best challenge virus from the in vitro trials. Success in these aims should demonstrate the potential of DAC to treat arenaviruses, bunyaviruses, and flaviviruses and pave the way for further trials with additional viruses and animal models. This work should greatly advance DAC toward ultimate utility as a safe, broad-spectrum therapeutic/prophylactic for NIAID priority and emerging viral pathogens, filling a large gap in existing therapeutics and directly supporting NERCE's mission.

Public Health Relevance

Success in the proposed work should greatly advance DAC toward ultimate utility as a safe, broad-spectrum therapeutic/prophylactic for NIAID priority viral pathogens, filling a large gap in existing therapeutics and directly supporting NERCE's mission.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057159-10
Application #
8617037
Study Section
Special Emphasis Panel (ZAI1-DDS-M (J1))
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$172,903
Indirect Cost
$53,681
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
de Wispelaere, Melissanne; Lian, Wenlong; Potisopon, Supanee et al. (2018) Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chem Biol 25:1006-1016.e8
Zheng, Huiqing; Colvin, Christopher J; Johnson, Benjamin K et al. (2017) Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 13:218-225
Coulson, Garry B; Johnson, Benjamin K; Zheng, Huiqing et al. (2017) Targeting Mycobacterium tuberculosis Sensitivity to Thiol Stress at Acidic pH Kills the Bacterium and Potentiates Antibiotics. Cell Chem Biol 24:993-1004.e4
Huang, Nai-Jia; Pishesha, Novalia; Mukherjee, Jean et al. (2017) Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun 8:423
Mertins, Philipp; Przybylski, Dariusz; Yosef, Nir et al. (2017) An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling. Cell Rep 19:2853-2866
Nair, Dhanalakshmi R; Chen, Ji; Monteiro, João M et al. (2017) A quinolinol-based small molecule with anti-MRSA activity that targets bacterial membrane and promotes fermentative metabolism. J Antibiot (Tokyo) 70:1009-1019
Choo, Min-Kyung; Sano, Yasuyo; Kim, Changhoon et al. (2017) TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. J Exp Med 214:1297-1311
de Wispelaere, Mélissanne; Carocci, Margot; Liang, Yanke et al. (2017) Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Res 139:171-179
Umetsu, Dale T (2017) Mechanisms by which obesity impacts upon asthma. Thorax 72:174-177
Chiaraviglio, Lucius; Kang, Yoon-Suk; Kirby, James E (2016) High Throughput, Real-time, Dual-readout Testing of Intracellular Antimicrobial Activity and Eukaryotic Cell Cytotoxicity. J Vis Exp :

Showing the most recent 10 out of 417 publications