Type I Interferons (the family of IFNa proteins and IFNp) and Type II IFN (IFNy) play central and essential roles in promoting innate immunity against a wide variety of viruses, bacteria and parasites. The IFNs induce not only cell-intrinsic mechanisms that protect host cells against pathogen infection but also activate a variety of cell-extrinsic mechanisms leading to activation of NK cells, macrophages, polymorphonuclear leukocytes and T cells that destroy infected cells. Our knowledge of IFN biology has stemmed largely from in vitro experiments performed on IFN-responsive versus unresponsive cells and in vivo approaches in which IFN responsiveness is globally ablated in mice through use of neutralizing or blocking monoclonal antibodies or through disruption of genes encoding either the IFN species themselves or their respective receptors. The physiologic relevance of these studies have been validated by the discovery of humans who have distinct defects in either producing or responding to the various forms of IFN. However, since the receptors for IFNa/p or IFNy are expressed on nearly all cells, we still know very little about the cell-specific functions of these cytokines in vivo. Since the IFNs play such a key role in innate immunity, obtaining a more detailed understanding of their common and unique effects on different cell populations is not only needed but essential if we wish to intentionally stimulate innate immunity, either prophylactically or therapeutically, to protect us against naturally-occurring (e.g. pandemic viral infections) or intentionally-produced (e.g., bioterrorism) infections. Armed with (1) an extensive understanding of IFN biology that the Schreiber lab has gained from molecular and genetic experiments conducted over the last 28 years (2) a comprehensive knowledge that exists within the Unanue laboratory about the immunobiology of Listeria monocytogenes infection, and (3) the particularly broad and deep understanding of virology that the other members of this MRCE program bring to this application, we propose to produce and study mice on a stabilized C57BL/6 genetic background that lack responsiveness to IFNa/p or IFNy in specific cell types to define the tissue specific actions of the IFNs to infection with priority pathogens.

Public Health Relevance

The interferons are a family of immune proteins that play key roles in promoting innate resistance to infectious agents. Although we know a great deal about the general actions of the interferons, we know very little about how they effect individual cell populations and tissues in intact hosts. This project will generate mice that lack the capacity to respond to the interferons in specific tissues and will thereby permit us to develop therapeutic strategies to enhance our resistance to infection by viruses, bacteria and parasites.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Bandyopadhyay, Sarmistha; Long, Matthew E; Allen, Lee-Ann H (2014) Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS One 9:e109525
Virgin, Herbert W (2014) The virome in mammalian physiology and disease. Cell 157:142-50
Bialasiewicz, Seweryn; McVernon, Jodie; Nolan, Terry et al. (2014) Detection of a divergent Parainfluenza 4 virus in an adult patient with influenza like illness using next-generation sequencing. BMC Infect Dis 14:275
Rasmussen, Jed A; Post, Deborah M B; Gibson, Bradford W et al. (2014) Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia. Infect Immun 82:1523-39
Patel, Dhara A; Patel, Anand C; Nolan, William C et al. (2014) High-throughput screening normalized to biological response: application to antiviral drug discovery. J Biomol Screen 19:119-30
Rohatgi, Anjali; Corbo, Joseph C; Monte, Kristen et al. (2014) Infection of myofibers contributes to increased pathogenicity during infection with an epidemic strain of chikungunya virus. J Virol 88:2414-25
Ermler, Megan E; Traylor, Zachary; Patel, Krupen et al. (2014) Rift Valley fever virus infection induces activation of the NLRP3 inflammasome. Virology 449:174-80
Moorman, Nathaniel J; Murphy, Eain A (2014) Roseomics: a blank slate. Curr Opin Virol 9:188-93
Canny, Susan P; Reese, Tiffany A; Johnson, L Steven et al. (2014) Pervasive transcription of a herpesvirus genome generates functionally important RNAs. MBio 5:e01033-13
Barker, Jason H; Kaufman, Justin W; Zhang, De-Sheng et al. (2014) Metabolic labeling to characterize the overall composition of Francisella lipid A and LPS grown in broth and in human phagocytes. Innate Immun 20:88-103

Showing the most recent 10 out of 257 publications