Hypothesis: Leptin is an important regulator of the intestinal inflammatory response to infection, and does so through its effects on either hematopoietic or non-hematopoietic cells of the gut. Leptin and leptin receptor are expressed in the intestinal epithelium and in infiltrating mononuclear cells in the lamina propria. Leptin controls expression of epithelial sodium/glucose and peptide transporters, regulates apoptosis, and induces intestinal inflammation via T lymphocytes. We and others have observed that mice deficient in leptin (ob/ob) or functional leptin receptor (db/db) have altered susceptibility to amebiasis and Clostridium difficile, as well as experimentally-induced inflammatory bowel disease. These results suggest that leptin may have broad regulatory roles in enteric infection and inflammation. Intriguingly, a common (present in one half of the CephUtah population analyzed by HapMap) single amino acid polymorphismm in the leptin receptor (that alters its affinity for leptin) is associated with resistance in children to amebiasis, and in adults to amebic liver abscess. We propose to study the mechanisms by which leptin and its receptor regulate intestinal defense against infection in mice and in humans. First we will test how general the observation is of the link of leptin to intestinal infection and inflammation. With collaborating investigators within MARGE we will determine if ob/ob (leptin deficient) and db/db (leptin receptor deficient) mice have increased susceptibility to infection and inflammation due to Giardia lamblia, Cryptospordium pan/urn, enteroaggregative E. coli and C. difficile. We will then determine the contribution to infection and inflammation of leptin and leptin receptor in intestinal epithelium vs. bone marrow-derived cells for a single infectious agent, and its dependency upon STATS signaling. Finally we will extend these observations to humans by testing for associations of protection from Giardia lamblia and enteroaggregative E. coli with the leptin receptor polymorphism found to be protective from amebiasis.

Public Health Relevance

Successful completion of these studies will provide (1) an understanding of the role of leptin in the intestinal response to infection;(2) a mechanistic understanding of how leptin acts in the gut;and (3) the extent to which common genetic polymorphisms in the leptin signaling pathway sensitize humans to enteric infection. Novel management of enteric infection and inflammation via modulation of leptin is a promise of this work.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057168-08
Application #
8233364
Study Section
Special Emphasis Panel (ZAI1)
Project Start
2011-03-01
Project End
2014-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
8
Fiscal Year
2011
Total Cost
$319,272
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Champion, Anna E; Bandara, Aloka B; Mohapatra, Nrusingh et al. (2018) Further Characterization of the Capsule-Like Complex (CLC) Produced by Francisella tularensis Subspecies tularensis: Protective Efficacy and Similarity to Outer Membrane Vesicles. Front Cell Infect Microbiol 8:182
Bridge, Dacie R; Blum, Faith C; Jang, Sungil et al. (2017) Creation and Initial Characterization of Isogenic Helicobacter pylori CagA EPIYA Variants Reveals Differential Activation of Host Cell Signaling Pathways. Sci Rep 7:11057
Kaempfer, Raymond; Popugailo, Andrey; Levy, Revital et al. (2017) Bacterial superantigen toxins induce a lethal cytokine storm by enhancing B7-2/CD28 costimulatory receptor engagement, a critical immune checkpoint. Receptors Clin Investig 4:
Molleston, Jerome M; Cherry, Sara (2017) Attacked from All Sides: RNA Decay in Antiviral Defense. Viruses 9:
Cifuentes-Muñoz, Nicolás; Sun, Weina; Ray, Greeshma et al. (2017) Mutations in the Transmembrane Domain and Cytoplasmic Tail of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly. J Virol 91:
Sarute, Nicolás; Ross, Susan R (2017) New World Arenavirus Biology. Annu Rev Virol 4:141-158
Ramachandran, Girish; Aheto, Komi; Shirtliff, Mark E et al. (2016) Poor biofilm-forming ability and long-term survival of invasive Salmonella Typhimurium ST313. Pathog Dis 74:
Wahid, Rezwanul; Fresnay, Stephanie; Levine, Myron M et al. (2016) Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol 173:87-95
Li, Huiguang; Hwang, Young; Perry, Kay et al. (2016) Structure and Metal Binding Properties of a Poxvirus Resolvase. J Biol Chem 291:11094-104
Chou, Yi-Ying; Cuevas, Christian; Carocci, Margot et al. (2016) Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor. J Virol 90:4494-4510

Showing the most recent 10 out of 375 publications